BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23314813)

  • 1. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis.
    Hofmann LC; Straub S; Bischof K
    J Exp Bot; 2013 Feb; 64(4):899-908. PubMed ID: 23314813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH.
    Hofmann LC; Heiden J; Bischof K; Teichberg M
    Planta; 2014 Jan; 239(1):231-42. PubMed ID: 24158465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental assessment of algal calcification as a potential source of atmospheric CO2.
    Kalokora OJ; Buriyo AS; Asplund ME; Gullström M; Mtolera MSP; Björk M
    PLoS One; 2020; 15(4):e0231971. PubMed ID: 32348324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera.
    Fernández PA; Roleda MY; Hurd CL
    Photosynth Res; 2015 Jun; 124(3):293-304. PubMed ID: 25869634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The profiles of nitrate reductase and carbonic anhydrase activity in batch cultivation of the marine microalgae Tetraselmis gracilis growing under different aeration conditions.
    Rigobello-Masini M; Masini JC; Aidar E
    FEMS Microbiol Ecol; 2006 Jul; 57(1):18-25. PubMed ID: 16819946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer.
    Gordillo FJ; Aguilera J; Jiménez C
    J Exp Bot; 2006; 57(11):2661-71. PubMed ID: 16829547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO₂ and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte.
    Hofmann LC; Bischof K; Baggini C; Johnson A; Koop-Jakobsen K; Teichberg M
    Oecologia; 2015 Apr; 177(4):1157-69. PubMed ID: 25648647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification.
    Long C; Zhang Y; Wei Z; Long L
    Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocean acidification impacts mussel control on biomineralisation.
    Fitzer SC; Phoenix VR; Cusack M; Kamenos NA
    Sci Rep; 2014 Aug; 4():6218. PubMed ID: 25163895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.
    Narvarte BCV; Nelson WA; Roleda MY
    Environ Pollut; 2020 Nov; 266(Pt 1):115344. PubMed ID: 32829170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of HCO
    Fan W; Liu Y; Xu X; Dong X; Wang H
    Plant Physiol Biochem; 2024 Apr; 209():108530. PubMed ID: 38520966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi.
    Stojkovic S; Beardall J; Matear R
    J Phycol; 2013 Aug; 49(4):670-9. PubMed ID: 27007199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced biological carbon consumption in a high CO2 ocean.
    Riebesell U; Schulz KG; Bellerby RG; Botros M; Fritsche P; Meyerhöfer M; Neill C; Nondal G; Oschlies A; Wohlers J; Zöllner E
    Nature; 2007 Nov; 450(7169):545-8. PubMed ID: 17994008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.
    Meyer FW; Vogel N; Teichberg M; Uthicke S; Wild C
    PLoS One; 2015; 10(8):e0133596. PubMed ID: 26267650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.
    Meyer FW; Schubert N; Diele K; Teichberg M; Wild C; Enríquez S
    PLoS One; 2016; 11(8):e0160268. PubMed ID: 27487195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of climate change factors on marine macroalgae: A review.
    Ji Y; Gao K
    Adv Mar Biol; 2021; 88():91-136. PubMed ID: 34119047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events.
    Rendina F; Bouchet PJ; Appolloni L; Russo GF; Sandulli R; Kolzenburg R; Putra A; Ragazzola F
    Mar Environ Res; 2019 Sep; 150():104764. PubMed ID: 31376632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.