BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23314820)

  • 1. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis.
    Wang H; Zhang Z; Li H; Zhao X; Liu X; Ortiz M; Lin C; Liu B
    J Exp Bot; 2013 Feb; 64(4):1017-24. PubMed ID: 23314820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis.
    Zhang Z; Ji R; Li H; Zhao T; Liu J; Lin C; Liu B
    Mol Plant; 2014 Sep; 7(9):1429-1440. PubMed ID: 24908267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio.
    Rolauffs S; Fackendahl P; Sahm J; Fiene G; Hoecker U
    Plant Physiol; 2012 Dec; 160(4):2015-27. PubMed ID: 23093358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating of the rapid shade-avoidance response by the circadian clock in plants.
    Salter MG; Franklin KA; Whitelam GC
    Nature; 2003 Dec; 426(6967):680-3. PubMed ID: 14668869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAR-RED ELONGATED HYPOCOTYLS3 negatively regulates shade avoidance responses in Arabidopsis.
    Ma L; Li Y; Li X; Xu D; Lin X; Liu M; Li G; Qin X
    Plant Cell Environ; 2019 Dec; 42(12):3280-3292. PubMed ID: 31351015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AtBBX21 and COP1 genetically interact in the regulation of shade avoidance.
    Crocco CD; Holm M; Yanovsky MJ; Botto JF
    Plant J; 2010 Nov; 64(4):551-62. PubMed ID: 21070414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both
    Zhou Y; Zhang D; An J; Yin H; Fang S; Chu J; Zhao Y; Li J
    Plant Physiol; 2018 Feb; 176(2):1850-1861. PubMed ID: 29254986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation.
    Coluccio MP; Sanchez SE; Kasulin L; Yanovsky MJ; Botto JF
    J Exp Bot; 2011 Jan; 62(1):167-76. PubMed ID: 20713464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in
    Huang X; Zhang Q; Jiang Y; Yang C; Wang Q; Li L
    Elife; 2018 Jun; 7():. PubMed ID: 29926790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis.
    González-Grandío E; Poza-Carrión C; Sorzano CO; Cubas P
    Plant Cell; 2013 Mar; 25(3):834-50. PubMed ID: 23524661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of flowering time by light quality.
    Cerdán PD; Chory J
    Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors.
    Galstyan A; Cifuentes-Esquivel N; Bou-Torrent J; Martinez-Garcia JF
    Plant J; 2011 Apr; 66(2):258-67. PubMed ID: 21205034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochrome-interacting factor 4 (PIF4) inhibits expression of SHORT HYPOCOTYL 2 (SHY2) to promote hypocotyl growth during shade avoidance in Arabidopsis.
    Li T; Li B; Wang L; Xie Z; Wang X; Zou L; Zhang D; Lin H
    Biochem Biophys Res Commun; 2021 Jan; 534():857-863. PubMed ID: 33153717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis.
    Roig-Villanova I; Bou J; Sorin C; Devlin PF; Martínez-García JF
    Plant Physiol; 2006 May; 141(1):85-96. PubMed ID: 16565297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis.
    Tavridou E; Schmid-Siegert E; Fankhauser C; Ulm R
    PLoS Genet; 2020 May; 16(5):e1008797. PubMed ID: 32392219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana.
    Mizuno T; Oka H; Yoshimura F; Ishida K; Yamashino T
    Biosci Biotechnol Biochem; 2015; 79(12):1987-94. PubMed ID: 26193333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.
    Wang X; Roig-Villanova I; Khan S; Shanahan H; Quail PH; Martinez-Garcia JF; Devlin PF
    J Exp Bot; 2011 May; 62(8):2973-87. PubMed ID: 21398429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Shade-Induced Hypocotyl Elongation in Arabidopsis.
    Ince YÇ; Galvão VC
    Methods Mol Biol; 2021; 2297():21-31. PubMed ID: 33656666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.
    Leivar P; Monte E; Cohn MM; Quail PH
    Mol Plant; 2012 May; 5(3):734-49. PubMed ID: 22492120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner.
    Kasulin L; Agrofoglio Y; Botto JF
    Ann Bot; 2013 May; 111(5):811-9. PubMed ID: 23444123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.