These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23314864)

  • 1. Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain.
    Hallen A; Jamie JF; Cooper AJ
    Neurochem Res; 2014; 39(3):527-41. PubMed ID: 23314864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.
    Hallen A; Cooper AJ; Jamie JF; Karuso P
    Neurochem Res; 2015 Jun; 40(6):1252-66. PubMed ID: 25931162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine brain ketimine reductase.
    Nardini M; Ricci G; Vesci L; Pecci L; Cavallini D
    Biochim Biophys Acta; 1988 Nov; 957(2):286-92. PubMed ID: 3191146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Evaluation of Imine-Reducing Enzymes: Common Principles in Imine Reductases, β-Hydroxy Acid Dehydrogenases, and Short-Chain Dehydrogenases/ Reductases.
    Stockinger P; Roth S; Müller M; Pleiss J
    Chembiochem; 2020 Sep; 21(18):2689-2695. PubMed ID: 32311225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity?
    McKenna MC
    Neurochem Int; 2011 Sep; 59(4):525-33. PubMed ID: 21771624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase.
    Hallen A; Cooper AJ; Smith JR; Jamie JF; Karuso P
    Amino Acids; 2015 Nov; 47(11):2457-61. PubMed ID: 26173510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The enzymes of methanol and methylamine metabolism in Pseudomonas methylica].
    Loginova NV; Trotsenko IuA
    Mikrobiologiia; 1974; 43(6):979-85. PubMed ID: 4375248
    [No Abstract]   [Full Text] [Related]  

  • 8. Recent advances in imine reductase-catalyzed reactions.
    Lenz M; Borlinghaus N; Weinmann L; Nestl BM
    World J Microbiol Biotechnol; 2017 Oct; 33(11):199. PubMed ID: 29022156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries.
    Hallen A; Jamie JF; Cooper AJ
    Amino Acids; 2013 Dec; 45(6):1249-72. PubMed ID: 24043460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
    Gamenara D; Domínguez de María P
    Org Biomol Chem; 2014 May; 12(19):2989-92. PubMed ID: 24695640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis.
    Karaca M; Frigerio F; Maechler P
    Neurochem Int; 2011 Sep; 59(4):510-7. PubMed ID: 21600947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme toolbox: novel enantiocomplementary imine reductases.
    Scheller PN; Fademrecht S; Hofelzer S; Pleiss J; Leipold F; Turner NJ; Nestl BM; Hauer B
    Chembiochem; 2014 Oct; 15(15):2201-4. PubMed ID: 25163890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones.
    Hallen A; Cooper AJ; Jamie JF; Haynes PA; Willows RD
    J Neurochem; 2011 Aug; 118(3):379-87. PubMed ID: 21332720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of nuclear glutamate dehydrogenase of chicken liver and brain.
    Panda P; Suar M; Singh D; Pandey SM; Chaturvedi MM; Purohit JS
    Protein Pept Lett; 2011 Dec; 18(12):1194-203. PubMed ID: 21728989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of glutamate dehydrogenase in mammalian ammonia metabolism.
    Spanaki C; Plaitakis A
    Neurotox Res; 2012 Jan; 21(1):117-27. PubMed ID: 22038055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imine reductases (IREDs).
    Mangas-Sanchez J; France SP; Montgomery SL; Aleku GA; Man H; Sharma M; Ramsden JI; Grogan G; Turner NJ
    Curr Opin Chem Biol; 2017 Apr; 37():19-25. PubMed ID: 28038349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation.
    Miyashita Y; Good AG
    J Exp Bot; 2008; 59(3):667-80. PubMed ID: 18296429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain.
    Cho SW; Lee J; Choi SY
    Eur J Biochem; 1995 Oct; 233(1):340-6. PubMed ID: 7588764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of glutamate dehydrogenase in human brain.
    Burbaeva GSh; Turishcheva MS; Vorobyeva EA; Savushkina OK; Tereshkina EB; Boksha IS
    Prog Neuropsychopharmacol Biol Psychiatry; 2002 Apr; 26(3):427-35. PubMed ID: 11999891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.