BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2331487)

  • 61. Substrate induced reactivation of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase denatured by low concentrations of guanidine hydrochloride.
    Jiang RF; Wang ZX; Xu GJ
    Biochim Biophys Acta; 1997 Nov; 1343(1):95-101. PubMed ID: 9428663
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A comparison of denaturation and inactivation rates of creatine kinase in guanidine solutions.
    Yao QZ; Zhou HM; Hou LX; Zou CG
    Sci Sin B; 1982 Dec; 25(12):1296-802. PubMed ID: 7167806
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluorescence studies on the dissociation and denaturation of pigeon liver malic enzyme.
    Lee HJ; Chen YH; Chang GG
    Biochim Biophys Acta; 1988 Jul; 955(2):119-27. PubMed ID: 3395617
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural properties of long- and short-chain alcohol dehydrogenases. Contribution of NAD+ to stability.
    Ribas De Pouplana L; Atrian S; Gonzàlex-Duarte R; Fothergill-Gilmore LA; Kelly SM; Price NC
    Biochem J; 1991 Jun; 276 ( Pt 2)(Pt 2):433-8. PubMed ID: 1904719
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Unfolding and refolding of the NAD(+)-dependent isocitrate dehydrogenase from yeast.
    Kelly SM; Duncan D; Price NC
    Int J Biol Macromol; 1993 Apr; 15(2):75-9. PubMed ID: 8485106
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima.
    Rehaber V; Jaenicke R
    J Biol Chem; 1992 Jun; 267(16):10999-1006. PubMed ID: 1366231
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Refolding and reactivation of liver alcohol dehydrogenase after dissociation and denaturation in 6M guanidine hydrochloride.
    Gerschitz J; Rudolph R; Jaenicke R
    Eur J Biochem; 1978 Jul; 87(3):591-9. PubMed ID: 210018
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple unfolded states of alcohol dehydrogenase I from Kluyveromyces lactis by guanidinium chloride.
    Sacchetta P; Di Rado R; Saliola M; Bozzi A; Falcone C; Di Ilio C; Martini F
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):238-44. PubMed ID: 11342049
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inactivation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by koningic acid.
    Sakai K; Hasumi K; Endo A
    Biochim Biophys Acta; 1988 Feb; 952(3):297-303. PubMed ID: 3337830
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protein stability: urea-induced versus guanidine-induced unfolding of metmyoglobin.
    Gupta R; Yadav S; Ahmad F
    Biochemistry; 1996 Sep; 35(36):11925-30. PubMed ID: 8794776
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of pH and guanidine hydrochloride on the conformation of 57 kDa rat liver nuclear thyroid hormone binding protein measured by fluorescence.
    Okabe N; Fujii M
    Chem Pharm Bull (Tokyo); 1992 Feb; 40(2):504-5. PubMed ID: 1606651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Artocarpus hirsuta lectin. Differential modes of chemical and thermal denaturation.
    Gaikwad SM; Gurjar MM; Khan MI
    Eur J Biochem; 2002 Mar; 269(5):1413-7. PubMed ID: 11874455
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparison of the hydrolytic activity and fluorescence of native, guanidine hydrochloride-treated and renatured cellobiohydrolase I from Trichoderma reesei.
    Woodward J; Lee NE; Carmichael JS; McNair SL; Wichert JM
    Biochim Biophys Acta; 1990 Jan; 1037(1):81-5. PubMed ID: 2294974
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unfolding and inactivation of Ampullarium crossean beta-glucosidase during denaturation by guanidine hydrochloride.
    Chen QX; Zhang Z; Huang H; Zhao FK; Xu GJ
    Int J Biochem Cell Biol; 2003 Aug; 35(8):1227-33. PubMed ID: 12757759
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Refolding of triosephosphate isomerase in low-water media investigated by fluorescence resonance energy transfer.
    Sepúlveda-Becerra MA; Ferreira ST; Strasser RJ; Garzón-Rodríguez W; Beltrán C; Gómez-Puyou A; Darszon A
    Biochemistry; 1996 Dec; 35(49):15915-22. PubMed ID: 8961958
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Pathways of the iRFP713 Unfolding Induced by Different Denaturants.
    Stepanenko OV; Stepanenko OV; Kuznetsova IM; Turoverov KK
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223568
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein unfolding studies of thiol-proteinase inhibitor from goat (Capra hircus) muscle in the presence of urea and GdnHCl as denaturants.
    Aatif M; Rahman S; Bano B
    Eur Biophys J; 2011 May; 40(5):611-7. PubMed ID: 21203886
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanism of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Markossian KA; Khanova HA; Kleimenov SY; Levitsky DI; Chebotareva NA; Asryants RA; Muronetz VI; Saso L; Yudin IK; Kurganov BI
    Biochemistry; 2006 Nov; 45(44):13375-84. PubMed ID: 17073459
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aggregation, dissociation and unfolding of glucose dehydrogenase during urea denaturation.
    Mendoza-Hernández G; Minauro F; Rendón JL
    Biochim Biophys Acta; 2000 May; 1478(2):221-31. PubMed ID: 10825533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.