BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23314954)

  • 1. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans.
    Ludwig A; Poller WC; Westphal K; Minkwitz S; Lättig-Tünnemann G; Metzkow S; Stangl K; Baumann G; Taupitz M; Wagner S; Schnorr J; Stangl V
    Basic Res Cardiol; 2013 Mar; 108(2):328. PubMed ID: 23314954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization.
    Wagner S; Schnorr J; Ludwig A; Stangl V; Ebert M; Hamm B; Taupitz M
    Int J Nanomedicine; 2013; 8():767-79. PubMed ID: 23450179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.
    Scharlach C; Kratz H; Wiekhorst F; Warmuth C; Schnorr J; Genter G; Ebert M; Mueller S; Schellenberger E
    Nanomedicine; 2015 Jul; 11(5):1085-95. PubMed ID: 25659644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammation-induced brain endothelial activation leads to uptake of electrostatically stabilized iron oxide nanoparticles via sulfated glycosaminoglycans.
    Berndt D; Millward JM; Schnorr J; Taupitz M; Stangl V; Paul F; Wagner S; Wuerfel JT; Sack I; Ludwig A; Infante-Duarte C
    Nanomedicine; 2017 May; 13(4):1411-1421. PubMed ID: 28131884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdistribution of Magnetic Resonance Imaging Contrast Agents in Atherosclerotic Plaques Determined by LA-ICP-MS and SR-μXRF Imaging.
    Uca YO; Hallmann D; Hesse B; Seim C; Stolzenburg N; Pietsch H; Schnorr J; Taupitz M
    Mol Imaging Biol; 2021 Jun; 23(3):382-393. PubMed ID: 33289060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy.
    Millward JM; Ariza de Schellenberger A; Berndt D; Hanke-Vela L; Schellenberger E; Waiczies S; Taupitz M; Kobayashi Y; Wagner S; Infante-Duarte C
    Neuroscience; 2019 Apr; 403():136-144. PubMed ID: 29273325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.
    Poller WC; Löwa N; Wiekhorst F; Taupitz M; Wagner S; Möller K; Baumann G; Stangl V; Trahms L; Ludwig A
    J Biomed Nanotechnol; 2016 Feb; 12(2):337-46. PubMed ID: 27305767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic labeling of primary murine monocytes using very small superparamagnetic iron oxide nanoparticles.
    Pohland M; Pohland C; Kiwit J; Glumm J
    Neural Regen Res; 2022 Oct; 17(10):2311-2315. PubMed ID: 35259855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10.
    Raynal I; Prigent P; Peyramaure S; Najid A; Rebuzzi C; Corot C
    Invest Radiol; 2004 Jan; 39(1):56-63. PubMed ID: 14701989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Iron-oxide-enhanced MR imaging of inflammatory atherosclerotic lesions: overview of experimental and initial clinical results].
    Schmitz SA
    Rofo; 2003 Apr; 175(4):469-76. PubMed ID: 12677500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity.
    Ariza de Schellenberger A; Kratz H; Farr TD; Löwa N; Hauptmann R; Wagner S; Taupitz M; Schnorr J; Schellenberger EA
    Int J Nanomedicine; 2016; 11():1517-35. PubMed ID: 27110112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of liver metastases: experimental comparison of anionic and conventional superparamagnetic iron oxide particles with a hepatobiliary contrast medium during dynamic and uptake phases.
    Kaufels N; Korn R; Wagner S; Schink T; Hamm B; Taupitz M; Schnorr J
    Invest Radiol; 2008 Jul; 43(7):496-503. PubMed ID: 18580332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Europium doping of superparamagnetic iron oxide nanoparticles enables their detection by fluorescence microscopy and for quantitative analytics.
    Kobayashi Y; Hauptmann R; Kratz H; Ebert M; Wagner S; Taupitz M
    Technol Health Care; 2017; 25(3):457-470. PubMed ID: 27935574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct coupling of annexin A5 to VSOP yields small, protein-covered nanoprobes for MR imaging of apoptosis.
    Figge L; Appler F; Chen HH; Sosnovik DE; Schnorr J; Seitz O; Taupitz M; Hamm B; Schellenberger E
    Contrast Media Mol Imaging; 2014; 9(4):291-9. PubMed ID: 24706613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia.
    Pohland M; Glumm R; Wiekhorst F; Kiwit J; Glumm J
    Int J Nanomedicine; 2017; 12():1577-1591. PubMed ID: 28280327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions.
    Segers FM; den Adel B; Bot I; van der Graaf LM; van der Veer EP; Gonzalez W; Raynal I; de Winther M; Wodzig WK; Poelmann RE; van Berkel TJ; van der Weerd L; Biessen EA
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1812-9. PubMed ID: 23744990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives.
    Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial interaction of citrate-coated iron oxide nanoparticles with the glycocalyx of THP-1 monocytes assessed by real-time magnetic particle spectroscopy and electron microscopy.
    Poller WC; Löwa N; Schleicher M; Münster-Wandowski A; Taupitz M; Stangl V; Ludwig A; Wiekhorst F
    Sci Rep; 2020 Feb; 10(1):3591. PubMed ID: 32107402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.