These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23315357)

  • 1. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis.
    Dam G; Ott P; Aagaard NK; Vilstrup H
    Metab Brain Dis; 2013 Jun; 28(2):217-20. PubMed ID: 23315357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle.
    Holecek M; Kandar R; Sispera L; Kovarik M
    Amino Acids; 2011 Feb; 40(2):575-84. PubMed ID: 20614225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications.
    Holecek M
    Nutrition; 2013 Oct; 29(10):1186-91. PubMed ID: 23756281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of branched-chain amino acids on muscles under hyperammonemic conditions.
    Holeček M; Vodeničarovová M
    J Physiol Biochem; 2018 Nov; 74(4):523-530. PubMed ID: 30058052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.
    Kawaguchi T; Taniguchi E; Sata M
    Nutr Clin Pract; 2013 Oct; 28(5):580-8. PubMed ID: 23945292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives.
    Holecek M
    Metab Brain Dis; 2014 Mar; 29(1):9-17. PubMed ID: 23996300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects.
    Dam G; Keiding S; Munk OL; Ott P; Buhl M; Vilstrup H; Bak LK; Waagepetersen HS; Schousboe A; Møller N; Sørensen M
    Am J Physiol Gastrointest Liver Physiol; 2011 Aug; 301(2):G269-77. PubMed ID: 21636533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy.
    Holecek M
    Nutrition; 2015 Jan; 31(1):14-20. PubMed ID: 25220875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation.
    Holeček M
    Nutrition; 2017 Sep; 41():80-85. PubMed ID: 28760433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc and protein metabolism in chronic liver diseases.
    Katayama K
    Nutr Res; 2020 Feb; 74():1-9. PubMed ID: 31891865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases.
    Holeček M
    Physiol Res; 2021 Jul; 70(3):293-305. PubMed ID: 33982576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA microarray analysis identified molecular pathways mediating the effects of supplementation of branched-chain amino acids on CCl4-induced cirrhosis in rats.
    Jia H; Takahashi S; Saito K; Kato H
    Mol Nutr Food Res; 2013 Feb; 57(2):291-306. PubMed ID: 23166034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Branched Chain Amino Acids in the treatment of hepatic Encephalopathy.
    Dam G; Aamann L; Vistrup H; Gluud LL
    J Clin Exp Hepatol; 2018 Dec; 8(4):448-451. PubMed ID: 30568347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis.
    Holeček M; Vodeničarovová M
    Int J Exp Pathol; 2018 Dec; 99(6):274-281. PubMed ID: 30637824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three targets of branched-chain amino acid supplementation in the treatment of liver disease.
    Holecek M
    Nutrition; 2010 May; 26(5):482-90. PubMed ID: 20071143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperammonemia-induced depletion of glutamate and branched-chain amino acids in muscle and plasma.
    Leweling H; Breitkreutz R; Behne F; Staedt U; Striebel JP; Holm E
    J Hepatol; 1996 Nov; 25(5):756-62. PubMed ID: 8938556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of ammonia metabolism in the skeletal muscles of patients with cirrhosis using N-13 ammonia PET.
    Nishiguchi S; Shiomi S; Kawamura E; Ishizu H; Habu D; Torii K; Kawabe J
    Ann Nucl Med; 2003 Jul; 17(5):417-9. PubMed ID: 12971644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis.
    Moriwaki H; Miwa Y; Tajika M; Kato M; Fukushima H; Shiraki M
    Biochem Biophys Res Commun; 2004 Jan; 313(2):405-9. PubMed ID: 14684176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a branched chain amino acid-enriched nutritional product on the pathophysiology of the liver and nutritional state of patients with liver cirrhosis.
    Watanabe A; Shiota T; Okita M; Nagashima H
    Acta Med Okayama; 1983 Aug; 37(4):321-33. PubMed ID: 6624532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and extracellular amino acid concentrations in portacaval-shunted rabbits. Role of hyperammonemia and effects of branched-chain amino acid-enriched parenteral nutrition.
    Leweling H; Staedt U; Striebel JP; Zeitz R; Holm E
    Z Ernahrungswiss; 1989 Jun; 28(2):149-72. PubMed ID: 2569793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.