These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
622 related articles for article (PubMed ID: 23315749)
1. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749 [TBL] [Abstract][Full Text] [Related]
2. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
3. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. Dabkowska I; Jurecka P; Hobza P J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739 [TBL] [Abstract][Full Text] [Related]
4. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules? Antony J; Grimme S J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533 [TBL] [Abstract][Full Text] [Related]
5. Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions. Morgado CA; Jurecka P; Svozil D; Hobza P; Sponer J Phys Chem Chem Phys; 2010 Apr; 12(14):3522-34. PubMed ID: 20336251 [TBL] [Abstract][Full Text] [Related]
6. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
7. Benchmark theoretical study of the π-π binding energy in the benzene dimer. Miliordos E; Aprà E; Xantheas SS J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749 [TBL] [Abstract][Full Text] [Related]
8. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions. Takatani T; David Sherrill C Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585 [TBL] [Abstract][Full Text] [Related]
9. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data. Pitonák M; Neogrády P; Cerný J; Grimme S; Hobza P Chemphyschem; 2009 Jan; 10(1):282-9. PubMed ID: 19115327 [TBL] [Abstract][Full Text] [Related]
10. Basis set dependence of higher-order correlation effects in π-type interactions. Carrell EJ; Thorne CM; Tschumper GS J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765 [TBL] [Abstract][Full Text] [Related]
11. Basis set consistent revision of the S22 test set of noncovalent interaction energies. Takatani T; Hohenstein EG; Malagoli M; Marshall MS; Sherrill CD J Chem Phys; 2010 Apr; 132(14):144104. PubMed ID: 20405982 [TBL] [Abstract][Full Text] [Related]
12. The performance of MP2.5 and MP2.X methods for nonequilibrium geometries of molecular complexes. Riley KE; Řezáč J; Hobza P Phys Chem Chem Phys; 2012 Oct; 14(38):13187-93. PubMed ID: 22941183 [TBL] [Abstract][Full Text] [Related]
13. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. Jurecka P; Hobza P J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608 [TBL] [Abstract][Full Text] [Related]
14. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions. Bozkaya U; Sherrill CD J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931 [TBL] [Abstract][Full Text] [Related]
15. Complete Basis Set Extrapolation and Hybrid Schemes for Geometry Gradients of Noncovalent Complexes. Černý J; Pitoňák M; Riley KE; Hobza P J Chem Theory Comput; 2011 Dec; 7(12):3924-34. PubMed ID: 26598338 [TBL] [Abstract][Full Text] [Related]
16. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. Chen JL; Sun T; Wang YB; Wang W J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021 [TBL] [Abstract][Full Text] [Related]
17. Ab initio calculations on halogen-bonded complexes and comparison with density functional methods. Lu YX; Zou JW; Fan JC; Zhao WN; Jiang YJ; Yu QS J Comput Chem; 2009 Apr; 30(5):725-32. PubMed ID: 18727160 [TBL] [Abstract][Full Text] [Related]
18. Improvement of the coupled-cluster singles and doubles method via scaling same- and opposite-spin components of the double excitation correlation energy. Takatani T; Hohenstein EG; Sherrill CD J Chem Phys; 2008 Mar; 128(12):124111. PubMed ID: 18376912 [TBL] [Abstract][Full Text] [Related]
19. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods. Mohan N; Vijayalakshmi KP; Koga N; Suresh CH J Comput Chem; 2010 Dec; 31(16):2874-82. PubMed ID: 20928850 [TBL] [Abstract][Full Text] [Related]
20. New SCS- and SOS-MP2 Coefficients Fitted to Semi-Coulombic Systems. Rigby J; Izgorodina EI J Chem Theory Comput; 2014 Aug; 10(8):3111-22. PubMed ID: 26588282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]