These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23315965)

  • 1. Numerical modeling of heat and mass transfer in the human eye under millimeter wave exposure.
    Karampatzakis A; Samaras T
    Bioelectromagnetics; 2013 May; 34(4):291-9. PubMed ID: 23315965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical model of heat transfer in the rabbit eye exposed to 60-GHz millimeter wave radiation.
    Papaioannou A; Samaras T
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2582-8. PubMed ID: 21672669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour.
    Karampatzakis A; Samaras T
    Phys Med Biol; 2010 Oct; 55(19):5653-65. PubMed ID: 20826900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved heat transfer modeling of the eye for electromagnetic wave exposures.
    Hirata A
    IEEE Trans Biomed Eng; 2007 May; 54(5):959-61. PubMed ID: 17518298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression.
    Le Quément C; Nicolaz CN; Habauzit D; Zhadobov M; Sauleau R; Le Dréan Y
    Bioelectromagnetics; 2014 Sep; 35(6):444-51. PubMed ID: 25099539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.
    Hirata A; Watanabe S; Taki M; Fujiwara O; Kojima M; Sasaki K
    Health Phys; 2008 Feb; 94(2):134-44. PubMed ID: 18188048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular effects of radiofrequency energy.
    Elder JA
    Bioelectromagnetics; 2003; Suppl 6():S148-61. PubMed ID: 14628311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.
    Habauzit D; Le Quément C; Zhadobov M; Martin C; Aubry M; Sauleau R; Le Dréan Y
    PLoS One; 2014; 9(10):e109435. PubMed ID: 25302706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of aqueous humor hydrodynamics in human eye heat transfer.
    Ooi EH; Ng EY
    Comput Biol Med; 2008 Feb; 38(2):252-62. PubMed ID: 18022147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE EFFECT OF GAZE ANGLE ON THE EVALUATIONS OF SAR AND TEMPERATURE RISE IN HUMAN EYE UNDER PLANE-WAVE EXPOSURES FROM 0.9 TO 10 GHZ.
    Diao Y; Leung SW; Chan KH; Sun W; Siu YM; Kong R
    Radiat Prot Dosimetry; 2016 Dec; 172(4):393-400. PubMed ID: 26705357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling and dosimetry of the 35 mm Petri dish under 46 GHz millimeter wave exposure.
    Zhao J; Wei Z
    Bioelectromagnetics; 2005 Sep; 26(6):481-8. PubMed ID: 15931681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.
    Tiang KL; Ooi EH
    Med Eng Phys; 2016 Aug; 38(8):776-84. PubMed ID: 27340100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of ocular effects after either single or repeated exposure to 10 mW/cm(2) from a 60 GHz CW source.
    Kues HA; D'Anna SA; Osiander R; Green WR; Monahan JC
    Bioelectromagnetics; 1999 Dec; 20(8):463-73. PubMed ID: 10559768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation.
    Titushkin IA; Rao VS; Pickard WF; Moros EG; Shafirstein G; Cho MR
    Radiat Res; 2009 Dec; 172(6):725-36. PubMed ID: 19929419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millimeter-Wave Heating in In Vitro Studies: Effect of Convection in Continuous and Pulse-Modulated Regimes.
    Orlacchio R; Zhadobov M; Alekseev SI; Nikolayev D; Sauleau R; Le Page Y; Le Dréan Y
    Bioelectromagnetics; 2019 Dec; 40(8):553-568. PubMed ID: 31579965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.
    Hirata A; Sugiyama H; Kojima M; Kawai H; Yamashiro Y; Fujiwara O; Watanabe S; Sasaki K
    Phys Med Biol; 2008 Jun; 53(12):3391-404. PubMed ID: 18523344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion.
    Romanenko S; Siegel PH; Wagenaar DA; Pikov V
    J Neurophysiol; 2014 Nov; 112(10):2423-31. PubMed ID: 25122711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute ocular injuries caused by 60-Ghz millimeter-wave exposure.
    Kojima M; Hanazawa M; Yamashiro Y; Sasaki H; Watanabe S; Taki M; Suzuki Y; Hirata A; Kamimura Y; Sasaki K
    Health Phys; 2009 Sep; 97(3):212-8. PubMed ID: 19667804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels.
    Flyckt VM; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2006 Oct; 51(19):5007-21. PubMed ID: 16985284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature profiles in spheres due to electromagnetic heating.
    Kritikos HN; Foster KR; Schwan HP
    J Microw Power; 1981 Dec; 16(3-4):327-44. PubMed ID: 6920416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.