These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 23316012)
1. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Aitken RJ; Smith TB; Lord T; Kuczera L; Koppers AJ; Naumovski N; Connaughton H; Baker MA; De Iuliis GN Andrology; 2013 Mar; 1(2):192-205. PubMed ID: 23316012 [TBL] [Abstract][Full Text] [Related]
2. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. Koppers AJ; De Iuliis GN; Finnie JM; McLaughlin EA; Aitken RJ J Clin Endocrinol Metab; 2008 Aug; 93(8):3199-207. PubMed ID: 18492763 [TBL] [Abstract][Full Text] [Related]
3. Boronate probes for the detection of hydrogen peroxide release from human spermatozoa. Purdey MS; Connaughton HS; Whiting S; Schartner EP; Monro TM; Thompson JG; Aitken RJ; Abell AD Free Radic Biol Med; 2015 Apr; 81():69-76. PubMed ID: 25640728 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Mahfouz R; Sharma R; Lackner J; Aziz N; Agarwal A Fertil Steril; 2009 Aug; 92(2):819-27. PubMed ID: 18710706 [TBL] [Abstract][Full Text] [Related]
5. Sea urchin spermatozoa generate at least two reactive oxygen species; the type of reactive oxygen species changes under different conditions. Kazama M; Hino A Mol Reprod Dev; 2012 Apr; 79(4):283-95. PubMed ID: 22328344 [TBL] [Abstract][Full Text] [Related]
6. Interaction between leucocytes and human spermatozoa influencing reactive oxygen intermediates release. Fraczek M; Sanocka D; Kurpisz M Int J Androl; 2004 Apr; 27(2):69-75. PubMed ID: 15149463 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Rinaldi M; Moroni P; Paape MJ; Bannerman DD Vet Immunol Immunopathol; 2007 Jan; 115(1-2):107-25. PubMed ID: 17067684 [TBL] [Abstract][Full Text] [Related]
8. Novel methods to detect ROS in viable spermatozoa of native semen samples. Riley L; Ammar O; Mello T; Giovannelli L; Vignozzi L; Muratori M Reprod Toxicol; 2021 Dec; 106():51-60. PubMed ID: 34637913 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species generation in human sperm: luminol and lucigenin chemiluminescence probes. McKinney KA; Lewis SE; Thompson W Arch Androl; 1996; 36(2):119-25. PubMed ID: 8907672 [TBL] [Abstract][Full Text] [Related]
10. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. Aitken RJ; Buckingham DW; West KM J Cell Physiol; 1992 Jun; 151(3):466-77. PubMed ID: 1338331 [TBL] [Abstract][Full Text] [Related]
11. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. Guthrie HD; Welch GR J Anim Sci; 2006 Aug; 84(8):2089-100. PubMed ID: 16864869 [TBL] [Abstract][Full Text] [Related]
12. Assessment of oxidative stress in sperm and semen. Kashou AH; Sharma R; Agarwal A Methods Mol Biol; 2013; 927():351-61. PubMed ID: 22992927 [TBL] [Abstract][Full Text] [Related]
13. UVB irradiation as a tool to assess ROS-induced damage in human spermatozoa. Amaral S; Redmann K; Sanchez V; Mallidis C; Ramalho-Santos J; Schlatt S Andrology; 2013 Sep; 1(5):707-14. PubMed ID: 23836725 [TBL] [Abstract][Full Text] [Related]
14. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa. Guthrie HD; Welch GR Methods Mol Biol; 2010; 594():163-71. PubMed ID: 20072917 [TBL] [Abstract][Full Text] [Related]
15. Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Caldefie-Chézet F; Walrand S; Moinard C; Tridon A; Chassagne J; Vasson MP Clin Chim Acta; 2002 May; 319(1):9-17. PubMed ID: 11922918 [TBL] [Abstract][Full Text] [Related]
16. Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Bennetts LE; De Iuliis GN; Nixon B; Kime M; Zelski K; McVicar CM; Lewis SE; Aitken RJ Mutat Res; 2008 May; 641(1-2):1-11. PubMed ID: 18342339 [TBL] [Abstract][Full Text] [Related]
17. Measurement of Reactive Oxygen Species in Semen Samples Using Chemiluminescence. Dias TR Methods Mol Biol; 2021; 2202():103-109. PubMed ID: 32857350 [TBL] [Abstract][Full Text] [Related]
18. Reactive oxygen species and sperm function--in sickness and in health. Aitken RJ; Jones KT; Robertson SA J Androl; 2012; 33(6):1096-106. PubMed ID: 22879525 [TBL] [Abstract][Full Text] [Related]
19. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Aitken RJ; Wingate JK; De Iuliis GN; McLaughlin EA Mol Hum Reprod; 2007 Apr; 13(4):203-11. PubMed ID: 17327268 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). Vera-Jimenez NI; Pietretti D; Wiegertjes GF; Nielsen ME Fish Shellfish Immunol; 2013 May; 34(5):1216-22. PubMed ID: 23454430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]