These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2331608)

  • 1. The distribution of changes in local cerebral energy metabolism associated with brain stimulation reward to the medial forebrain bundle of the rat.
    Porrino LJ; Huston-Lyons D; Bain G; Sokoloff L; Kornetsky C
    Brain Res; 1990 Mar; 511(1):1-6. PubMed ID: 2331608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic mapping of the brain during rewarding self-stimulation.
    Porrino LJ; Esposito RU; Seeger TF; Crane AM; Pert A; Sokoloff L
    Science; 1984 Apr; 224(4646):306-9. PubMed ID: 6710145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the olfactory tubercle in the effects of cocaine, morphine and brain-stimulation reward.
    Kornetsky C; Huston-Lyons D; Porrino LJ
    Brain Res; 1991 Feb; 541(1):75-81. PubMed ID: 2029627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional differences in desensitization of c-Fos expression following repeated self-stimulation of the medial forebrain bundle in the rat.
    Nakahara D; Ishida Y; Nakamura M; Kuwahara I; Todaka K; Nishimori T
    Neuroscience; 1999 Mar; 90(3):1013-20. PubMed ID: 10218800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide.
    Gallistel CR; Gomita Y; Yadin E; Campbell KA
    J Neurosci; 1985 May; 5(5):1246-61. PubMed ID: 3873523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [14 C]2-Deoxyglucose uptake marks systems activated by rewarding brain stimulation.
    Gallistel CR; Karreman GA; Reivich M
    Brain Res Bull; 1977; 2(2):149-52. PubMed ID: 880487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 14C-2-deoxyglucose analysis of the neural pathways of the limbic forebrain in the rat: II. The hypothalamus.
    Watson RE; Troiano R; Poulakos J; Weiner S; Siegel A
    Brain Res Bull; 1982 May; 8(5):459-76. PubMed ID: 6288197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic brain structures are important sites of kappa-opioid receptor-mediated actions in the rat: a [14C]-2-deoxyglucose study.
    Ableitner A; Herz A
    Brain Res; 1989 Jan; 478(2):326-36. PubMed ID: 2538203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal forebrain knife cuts and medial forebrain bundle self-stimulation.
    Waraczynski MA
    Brain Res; 1988 Jan; 438(1-2):8-22. PubMed ID: 3257893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of subacute capsaicin treatment on local cerebral glucose utilization in the rat.
    Szikszay M; London ED
    Neuroscience; 1988 Jun; 25(3):917-23. PubMed ID: 3405433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique.
    Kliot M; Poletti CE
    Science; 1979 May; 204(4393):641-3. PubMed ID: 432672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.
    Simmons JM; Ackermann RF; Gallistel CR
    J Neurosci; 1998 Oct; 18(20):8515-33. PubMed ID: 9763494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative cerebral glucose metabolism evoked by dental-pulp stimulation in the rat.
    Shetter AG; Sweet WH
    J Neurosurg; 1979 Jul; 51(1):12-7. PubMed ID: 448408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local cerebral energy metabolism: its relationship to local functional activity and blood flow.
    Sokoloff L
    Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):71-91. PubMed ID: 7426808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in local cerebral glucose utilization during rewarding brain stimulation.
    Esposito RU; Porrino LJ; Seeger TF; Crane AM; Everist HD; Pert A
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):635-9. PubMed ID: 6582517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeine-diazepam interaction and local cerebral glucose utilization in the conscious rat.
    Nehlig A; Daval JL; Pereira de Vasconcelos A; Boyet S
    Brain Res; 1987 Sep; 419(1-2):272-8. PubMed ID: 3676730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release.
    Bregman T; Reznikov R; Diwan M; Raymond R; Butson CR; Nobrega JN; Hamani C
    Brain Stimul; 2015; 8(4):708-13. PubMed ID: 25835354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in local cerebral glucose utilization following central administration of corticotropin-releasing factor in rats.
    Sharkey J; Appel NM; De Souza EB
    Synapse; 1989; 4(1):80-7. PubMed ID: 2788932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [14C]deoxyglucose incorporation into rat brain regions during hypothalamic or peripheral thermal stimulation.
    Morimoto A; Murakami N
    Am J Physiol; 1985 Jan; 248(1 Pt 2):R84-92. PubMed ID: 3970189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The substrate for brain-stimulation reward in the lateral preoptic area. I. Anatomical mapping of its boundaries.
    Bushnik T; Bielajew C; Konkle AT
    Brain Res; 2000 Oct; 881(2):103-11. PubMed ID: 11036147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.