These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2331609)

  • 1. Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals.
    Whittaker VP
    Brain Res; 1990 Mar; 511(1):113-21. PubMed ID: 2331609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesamicol blocks the recovery, by recycling cholinergic electromotor synaptic vesicles, of the biophysical characteristics of the reserve population.
    Rícný J; Whittaker VP
    Biochim Biophys Acta; 1993 Jun; 1148(2):234-8. PubMed ID: 8504117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study of stimulus-induced vesicle recycling in electromotor nerve terminals using labile and stable vesicle markers.
    Agoston DV; Dowe GH; Fiedler W; Giompres PE; Roed IS; Walker JH; Whittaker VP; Yamaguchi T
    J Neurochem; 1986 Nov; 47(5):1584-92. PubMed ID: 3760875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.
    Giompres PE; Whittaker VP
    Biochim Biophys Acta; 1984 Mar; 770(2):166-70. PubMed ID: 6696906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport.
    Gracz LM; Wang WC; Parsons SM
    Biochemistry; 1988 Jul; 27(14):5268-74. PubMed ID: 3167045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction.
    Van der Kloot W
    Prog Neurobiol; 2003 Nov; 71(4):269-303. PubMed ID: 14698765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo.
    Corthay J; Dunant Y; Loctin F
    J Physiol; 1982 Apr; 325():461-79. PubMed ID: 6286942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of veratridine on miniature endplate current amplitudes at the rat neuromuscular junction and acetylcholine uptake by Torpedo synaptic vesicles.
    Pemberton KE; Nguyen ML; Prior C; Parsons SM; Marshall IG
    Brain Res; 1995 Feb; 671(2):267-74. PubMed ID: 7743214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata.
    Diebler MF; Gaudry-Talarmain YM
    J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium.
    Bonzelius F; Zimmermann H
    J Neurochem; 1990 Oct; 55(4):1266-73. PubMed ID: 2398359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release.
    Zimmerman H; Denston CR
    Neuroscience; 1977; 2(5):695-714. PubMed ID: 22832
    [No Abstract]   [Full Text] [Related]  

  • 12. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ.
    Zimmermann H; Denston CR
    Neuroscience; 1977; 2(5):715-30. PubMed ID: 593552
    [No Abstract]   [Full Text] [Related]  

  • 13. Separation of recycling and reserve synaptic vesicles from cholinergic nerve terminals of the myenteric plexus of guinea pig ileum.
    Agoston DV; Kosh JW; Lisziewicz J; Whittaker VP
    J Neurochem; 1985 Jan; 44(1):299-305. PubMed ID: 3964834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles.
    Weihe E; Tao-Cheng JH; Schäfer MK; Erickson JD; Eiden LE
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3547-52. PubMed ID: 8622973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electromotor system of Torpedo. A model cholinergic system.
    Whittaker VP
    Naturwissenschaften; 1977 Dec; 64(12):606-11. PubMed ID: 593415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ.
    Herrmann C; Volknandt W; Wittich B; Kellner R; Zimmermann H
    J Biol Chem; 1996 Jun; 271(23):13908-15. PubMed ID: 8662815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for heterogeneous pools of acetylcholine in isolated cholinergic synaptic vesicles.
    Dowdall MJ; Zimmermann H
    Brain Res; 1974 May; 71(1):160-6. PubMed ID: 4821416
    [No Abstract]   [Full Text] [Related]  

  • 19. Enkephalin uptake into cholinergic synaptic vesicles and nerve terminals.
    Michaelson DM; Wien-Naor D
    Ann N Y Acad Sci; 1987; 493():234-51. PubMed ID: 3296908
    [No Abstract]   [Full Text] [Related]  

  • 20. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage.
    Anderson DC; Bahr BA; Parsons SM
    J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.