These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23316261)
1. Tunable Doping in Graphene by Light-Switchable Molecules. Shashikala HB; Nicolas CI; Wang XQ J Phys Chem C Nanomater Interfaces; 2012 Dec; 116(49):26102-26105. PubMed ID: 23316261 [TBL] [Abstract][Full Text] [Related]
2. Light-driven reversible modulation of doping in graphene. Kim M; Safron NS; Huang C; Arnold MS; Gopalan P Nano Lett; 2012 Jan; 12(1):182-7. PubMed ID: 22149166 [TBL] [Abstract][Full Text] [Related]
3. Covalent functionalization of dipole-modulating molecules on trilayer graphene: an avenue for graphene-interfaced molecular machines. Nguyen P; Li J; Sreeprasad TS; Jasuja K; Mohanty N; Ikenberry M; Hohn K; Shenoy VB; Berry V Small; 2013 Nov; 9(22):3823-8. PubMed ID: 23713056 [TBL] [Abstract][Full Text] [Related]
4. Gate-Tunable Dirac Point of Molecular Doped Graphene. Solís-Fernández P; Okada S; Sato T; Tsuji M; Ago H ACS Nano; 2016 Feb; 10(2):2930-9. PubMed ID: 26812353 [TBL] [Abstract][Full Text] [Related]
5. Controlled Doping in Graphene Monolayers by Trapping Organic Molecules at the Graphene-Substrate Interface. Srivastava PK; Yadav P; Rani V; Ghosh S ACS Appl Mater Interfaces; 2017 Feb; 9(6):5375-5381. PubMed ID: 28094503 [TBL] [Abstract][Full Text] [Related]
6. Adjusting Fermi Level of Graphene by Controlling the Linker Lengths of Dipolar Molecules. Zhang M; Yu J; He J; Huang C Langmuir; 2019 Apr; 35(16):5448-5454. PubMed ID: 30951631 [TBL] [Abstract][Full Text] [Related]
7. Optically Triggered Control of the Charge Carrier Density in Chemically Functionalized Graphene Field Effect Transistors. Tang Z; George A; Winter A; Kaiser D; Neumann C; Weimann T; Turchanin A Chemistry; 2020 May; 26(29):6473-6478. PubMed ID: 32150652 [TBL] [Abstract][Full Text] [Related]
8. Reversibly light-modulated dirac point of graphene functionalized with spiropyran. Jang AR; Jeon EK; Kang D; Kim G; Kim BS; Kang DJ; Shin HS ACS Nano; 2012 Oct; 6(10):9207-13. PubMed ID: 22980316 [TBL] [Abstract][Full Text] [Related]
9. Inverse transfer method using polymers with various functional groups for controllable graphene doping. Lee SK; Yang JW; Kim HH; Jo SB; Kang B; Bong H; Lee HC; Lee G; Kim KS; Cho K ACS Nano; 2014 Aug; 8(8):7968-75. PubMed ID: 25050634 [TBL] [Abstract][Full Text] [Related]
10. Photocontrolled molecular structural transition and doping in graphene. Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836 [TBL] [Abstract][Full Text] [Related]
11. Tunable doping of graphene by using physisorbed self-assembled networks. Phillipson R; Lockhart de la Rosa CJ; Teyssandier J; Walke P; Waghray D; Fujita Y; Adisoejoso J; Mali KS; Asselberghs I; Huyghebaert C; Uji-I H; De Gendt S; De Feyter S Nanoscale; 2016 Dec; 8(48):20017-20026. PubMed ID: 27883146 [TBL] [Abstract][Full Text] [Related]
12. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene. Ebrish MA; Olson EJ; Koester SJ ACS Appl Mater Interfaces; 2014 Jul; 6(13):10296-303. PubMed ID: 24896230 [TBL] [Abstract][Full Text] [Related]
13. Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. Langer R; Błoński P; Hofer C; Lazar P; Mustonen K; Meyer JC; Susi T; Otyepka M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34074-34085. PubMed ID: 32618184 [TBL] [Abstract][Full Text] [Related]
14. Dipole-Induced Raman Enhancement Using Noncovalent Azobenzene-Functionalized Self-Assembled Monolayers on Graphene Terraces. Brill AR; Biswas S; Caspary Toroker M; de Ruiter G; Koren E ACS Appl Mater Interfaces; 2021 Mar; 13(8):10271-10278. PubMed ID: 33591709 [TBL] [Abstract][Full Text] [Related]
15. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine. Tang S; Yu J; Liu L Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178 [TBL] [Abstract][Full Text] [Related]
16. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Yu WJ; Liao L; Chae SH; Lee YH; Duan X Nano Lett; 2011 Nov; 11(11):4759-63. PubMed ID: 21985035 [TBL] [Abstract][Full Text] [Related]
17. Adsorbed Molecules as Interchangeable Dopants and Scatterers with a Van der Waals Bonding Memory in Graphene Sensors. Agbonlahor OG; Muruganathan M; Imamura T; Mizuta H ACS Sens; 2020 Jul; 5(7):2003-2009. PubMed ID: 32597169 [TBL] [Abstract][Full Text] [Related]
18. On-demand doping of graphene by stamping with a chemically functionalized rubber lens. Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481 [TBL] [Abstract][Full Text] [Related]
19. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach. Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379 [TBL] [Abstract][Full Text] [Related]
20. Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes. Piccinini E; Bliem C; Giussi JM; Knoll W; Azzaroni O Langmuir; 2019 Jun; 35(24):8038-8044. PubMed ID: 31094531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]