BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23316762)

  • 1. Chemoselectivity in the reductive elimination from high oxidation state palladium complexes--scrambling mechanism uncovered.
    Nielsen MC; Lyngvi E; Schoenebeck F
    J Am Chem Soc; 2013 Feb; 135(5):1978-85. PubMed ID: 23316762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of N-substitution on the reductive elimination behaviour of hydrocarbyl-palladium-carbene complexes--a DFT study.
    Graham DC; Cavell KJ; Yates BF
    Dalton Trans; 2006 Apr; (14):1768-75. PubMed ID: 16568186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic reductive elimination from dinuclear Pd(III) complexes.
    Powers DC; Benitez D; Tkatchouk E; Goddard WA; Ritter T
    J Am Chem Soc; 2010 Oct; 132(40):14092-103. PubMed ID: 20858006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate.
    Khusnutdinova JR; Rath NP; Mirica LM
    J Am Chem Soc; 2012 Feb; 134(4):2414-22. PubMed ID: 22239690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes.
    Roy AH; Hartwig JF
    J Am Chem Soc; 2003 Nov; 125(46):13944-5. PubMed ID: 14611215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium-catalyzed reductive homocoupling of aromatic halides and oxidation of alcohols.
    Zeng M; Du Y; Shao L; Qi C; Zhang XM
    J Org Chem; 2010 Apr; 75(8):2556-63. PubMed ID: 20302294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation.
    Popp BV; Stahl SS
    Chemistry; 2009; 15(12):2915-22. PubMed ID: 19191243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory.
    Barder TE; Buchwald SL
    J Am Chem Soc; 2007 Oct; 129(39):12003-10. PubMed ID: 17850080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organometallic chemistry of amidate complexes. accelerating effect of bidentate ligands on the reductive elimination of N-aryl amidates from palladium(II).
    Fujita K; Yamashita M; Puschmann F; Alvarez-Falcon MM; Incarvito CD; Hartwig JF
    J Am Chem Soc; 2006 Jul; 128(28):9044-5. PubMed ID: 16834372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch of regioselectivity in palladium-catalyzed silaboration of terminal alkynes by ligand-dependent control of reductive elimination.
    Ohmura T; Oshima K; Taniguchi H; Suginome M
    J Am Chem Soc; 2010 Sep; 132(35):12194-6. PubMed ID: 20701274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic palladium catalysis: direct observation of Pd(III)-Pd(III) intermediates.
    Powers DC; Geibel MA; Klein JE; Ritter T
    J Am Chem Soc; 2009 Dec; 131(47):17050-1. PubMed ID: 19899740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans influence on the rate of reductive elimination. Reductive elimination of amines from isomeric arylpalladium amides with unsymmetrical coordination spheres.
    Yamashita M; Cuevas Vicario JV; Hartwig JF
    J Am Chem Soc; 2003 Dec; 125(52):16347-60. PubMed ID: 14692777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation into the mechanism of reductive elimination from bimetallic palladium complexes.
    Ariafard A; Hyland CJ; Canty AJ; Sharma M; Yates BF
    Inorg Chem; 2011 Jul; 50(14):6449-57. PubMed ID: 21671562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tridentate assembling ligands based on oxazoline and phosphorus donors in dinuclear Pd(I)-Pd(I) complexes.
    Zhang J; Pattacini R; Braunstein P
    Inorg Chem; 2009 Dec; 48(24):11954-62. PubMed ID: 19921847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties of [Pd(COOMe)(n)X(2-n)(PPh(3))(2)] (n = 0, 1, 2; X = Cl, NO(2), ONO(2), OAc and OTs) in the oxidative carbonylation of MeOH.
    Amadio E; Cavinato G; Dolmella A; Toniolo L
    Inorg Chem; 2010 Apr; 49(8):3721-9. PubMed ID: 20334352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C-O bond-forming reductive elimination.
    Dick AR; Kampf JW; Sanford MS
    J Am Chem Soc; 2005 Sep; 127(37):12790-1. PubMed ID: 16159259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive elimination from arylpalladium cyanide complexes.
    Klinkenberg JL; Hartwig JF
    J Am Chem Soc; 2012 Apr; 134(13):5758-61. PubMed ID: 22352451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of methylacetylene bisselenation catalyzed by palladium complex from density functional study.
    Wang M; Cheng L; Wang J; Wu Z
    J Comput Chem; 2011 Apr; 32(6):1170-7. PubMed ID: 21387343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study.
    Blacque O; Frech CM
    Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.