BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23316803)

  • 1. Discovery and mechanism study of SIRT1 activators that promote the deacetylation of fluorophore-labeled substrate.
    Wu J; Zhang D; Chen L; Li J; Wang J; Ning C; Yu N; Zhao F; Chen D; Chen X; Chen K; Jiang H; Liu H; Liu D
    J Med Chem; 2013 Feb; 56(3):761-80. PubMed ID: 23316803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide.
    Feng Y; Wu J; Chen L; Luo C; Shen X; Chen K; Jiang H; Liu D
    Anal Biochem; 2009 Dec; 395(2):205-10. PubMed ID: 19682970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism.
    Nguyen GT; Gertz M; Steegborn C
    Chem Biol; 2013 Nov; 20(11):1375-85. PubMed ID: 24211137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol.
    Cao D; Wang M; Qiu X; Liu D; Jiang H; Yang N; Xu RM
    Genes Dev; 2015 Jun; 29(12):1316-25. PubMed ID: 26109052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Turn-On Fluorescent Probe with Aggregation-Induced Emission Characteristics for SIRT1 Modulator Screening and Living-Cell Imaging.
    Wang Y; Chen Y; Wang H; Cheng Y; Zhao X
    Anal Chem; 2015; 87(10):5046-9. PubMed ID: 25903518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.
    Chen L; Feng Y; Zhou Y; Zhu W; Shen X; Chen K; Jiang H; Liu D
    J Inorg Biochem; 2010 Feb; 104(2):180-5. PubMed ID: 19923004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition.
    Zhao X; Allison D; Condon B; Zhang F; Gheyi T; Zhang A; Ashok S; Russell M; MacEwan I; Qian Y; Jamison JA; Luz JG
    J Med Chem; 2013 Feb; 56(3):963-9. PubMed ID: 23311358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale landscape of molecular mechanism of SIRT1 activation by STACs.
    Liu F; Yang N
    Phys Chem Chem Phys; 2020 Jan; 22(2):826-837. PubMed ID: 31840716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand and structure-based approaches for the identification of SIRT1 activators.
    Vyas VK; Goel A; Ghate M; Patel P
    Chem Biol Interact; 2015 Feb; 228():9-17. PubMed ID: 25595223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2.
    Huhtiniemi T; Salo HS; Suuronen T; Poso A; Salminen A; Leppänen J; Jarho E; Lahtela-Kakkonen M
    J Med Chem; 2011 Oct; 54(19):6456-68. PubMed ID: 21895016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the mechanism of SIRT1 activation by a 1,4-dihydropyridine.
    Manna D; Bhuyan R; Ghosh R
    J Mol Model; 2018 Nov; 24(12):340. PubMed ID: 30448921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Mechanism for SIRT1 Activators That Does Not Rely on the Chemical Moiety Immediately C-Terminal to the Acetyl-Lysine of the Substrate.
    Yu ND; Wang B; Li XZ; Han HZ; Liu D
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator.
    Dai H; Kustigian L; Carney D; Case A; Considine T; Hubbard BP; Perni RB; Riera TV; Szczepankiewicz B; Vlasuk GP; Stein RL
    J Biol Chem; 2010 Oct; 285(43):32695-32703. PubMed ID: 20702418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the performance of three resveratrol in binding with SIRT1 by molecular dynamics simulation and MM/GBSA methods: the weakest binding of resveratrol 3 to SIRT1 triggers a possibility of dissociation from its binding site.
    Chen H; Wang Y; Gao Z; Yang W; Gao J
    J Comput Aided Mol Des; 2019 Apr; 33(4):437-446. PubMed ID: 30805760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells.
    Zu Y; Liu L; Lee MY; Xu C; Liang Y; Man RY; Vanhoutte PM; Wang Y
    Circ Res; 2010 Apr; 106(8):1384-93. PubMed ID: 20203304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the cellular deacetylase activity of SIRT1 on p53 via LanthaScreen® technology.
    Robers MB; Loh C; Carlson CB; Yang H; Frey EA; Hermanson SB; Bi K
    Mol Biosyst; 2011 Jan; 7(1):59-66. PubMed ID: 20931131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuin 1 (SIRT1): the misunderstood HDAC.
    Stünkel W; Campbell RM
    J Biomol Screen; 2011 Dec; 16(10):1153-69. PubMed ID: 22086720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of imidazo[1,2-b]thiazole derivatives as novel SIRT1 activators.
    Vu CB; Bemis JE; Disch JS; Ng PY; Nunes JJ; Milne JC; Carney DP; Lynch AV; Smith JJ; Lavu S; Lambert PD; Gagne DJ; Jirousek MR; Schenk S; Olefsky JM; Perni RB
    J Med Chem; 2009 Mar; 52(5):1275-83. PubMed ID: 19199480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased SIRT1 deacetylase activity in sporadic inclusion-body myositis muscle fibers.
    Nogalska A; D'Agostino C; Engel WK; Davies KJ; Askanas V
    Neurobiol Aging; 2010 Sep; 31(9):1637-48. PubMed ID: 18922603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular mechanism for direct sirtuin activation by resveratrol.
    Gertz M; Nguyen GT; Fischer F; Suenkel B; Schlicker C; Fränzel B; Tomaschewski J; Aladini F; Becker C; Wolters D; Steegborn C
    PLoS One; 2012; 7(11):e49761. PubMed ID: 23185430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.