These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23316816)

  • 1. The energetic difference between synthesis of correct and incorrect base pairs accounts for highly accurate DNA replication.
    Olson AC; Patro JN; Urban M; Kuchta RD
    J Am Chem Soc; 2013 Jan; 135(4):1205-8. PubMed ID: 23316816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.
    Oertell K; Harcourt EM; Mohsen MG; Petruska J; Kool ET; Goodman MF
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):E2277-85. PubMed ID: 27044101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 5-Me of thyminyl (T) interaction with the neighboring nucleobases dictate the relative stability of isosequential DNA-RNA hybrid duplexes.
    Chatterjee S; Pathmasiri W; Chattopadhyaya J
    Org Biomol Chem; 2005 Nov; 3(21):3911-5. PubMed ID: 16240008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between DNA melting thermodynamics and DNA polymerase fidelity.
    Petruska J; Goodman MF; Boosalis MS; Sowers LC; Cheong C; Tinoco I
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6252-6. PubMed ID: 3413095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA.
    Movileanu L; Benevides JM; Thomas GJ
    Nucleic Acids Res; 2002 Sep; 30(17):3767-77. PubMed ID: 12202762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy simulations of uncatalyzed DNA replication fidelity: structure and stability of T.G and dTTP.G terminal DNA mismatches flanked by a single dangling nucleotide.
    Bren U; Martínek V; Florian J
    J Phys Chem B; 2006 Jun; 110(21):10557-66. PubMed ID: 16722767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors determining the deriving force of DNA formation: geometrical differences of base pairs, dehydration of bases, and the arginine assisting.
    Sun L; Cukier RI; Bu Y
    J Phys Chem B; 2007 Feb; 111(7):1802-8. PubMed ID: 17266349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing.
    Eoff RL; Angel KC; Egli M; Guengerich FP
    J Biol Chem; 2007 May; 282(18):13573-84. PubMed ID: 17337730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-directed base pairing of 2-chloro-2'-deoxyadenosine catalyzed by AMV reverse transcriptase.
    Bukowska-Maciejewska AM; Kuśmierek JT
    Acta Biochim Pol; 1998; 45(2):587-93. PubMed ID: 9821887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerase beta: structure-fidelity relationship from Pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant.
    Ahn J; Werneburg BG; Tsai MD
    Biochemistry; 1997 Feb; 36(5):1100-7. PubMed ID: 9033400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T7 RNA Polymerase Discriminates Correct and Incorrect Nucleoside Triphosphates by Free Energy.
    Wu S; Wang J; Pu X; Li L; Li Q
    Biophys J; 2018 Apr; 114(8):1755-1761. PubMed ID: 29694856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).
    Chiaramonte M; Moore CL; Kincaid K; Kuchta RD
    Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta.
    Radhakrishnan R; Schlick T
    Biochem Biophys Res Commun; 2006 Nov; 350(3):521-9. PubMed ID: 17022941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient replication bypass of size-expanded DNA base pairs in bacterial cells.
    Delaney JC; Gao J; Liu H; Shrivastav N; Essigmann JM; Kool ET
    Angew Chem Int Ed Engl; 2009; 48(25):4524-7. PubMed ID: 19444841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Dive into DNA Base Pairing Interactions Under Water.
    Li R; Mak CH
    J Phys Chem B; 2020 Jul; 124(27):5559-5570. PubMed ID: 32525678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion.
    Ober M; Müller H; Pieck C; Gierlich J; Carell T
    J Am Chem Soc; 2005 Dec; 127(51):18143-9. PubMed ID: 16366567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-Free Replication with Two or Four Bases.
    Hänle E; Richert C
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8911-8915. PubMed ID: 29779237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.