These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23316903)

  • 1. Quantitative structure-activity relationship models that stand the test of time.
    Davis AM; Wood DJ
    Mol Pharm; 2013 Apr; 10(4):1183-90. PubMed ID: 23316903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic overview of chemoinformatics.
    Engel T
    J Chem Inf Model; 2006; 46(6):2267-77. PubMed ID: 17125169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments.
    Pandey G; Saxena AK
    J Chem Inf Model; 2006; 46(6):2579-90. PubMed ID: 17125198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel semi-automated methodology for developing highly predictive QSAR models: application for development of QSAR models for insect repellent amides.
    Bhonsle JB; Bhattacharjee AK; Gupta RK
    J Mol Model; 2007 Jan; 13(1):179-208. PubMed ID: 17048015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging chemical patterns: a new methodology for molecular classification and compound selection.
    Auer J; Bajorath J
    J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico human and rat Vss quantitative structure-activity relationship models.
    Gleeson MP; Waters NJ; Paine SW; Davis AM
    J Med Chem; 2006 Mar; 49(6):1953-63. PubMed ID: 16539383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated in silico analysis of drug-binding to human serum albumin.
    Estrada E; Uriarte E; Molina E; Simón-Manso Y; Milne GW
    J Chem Inf Model; 2006; 46(6):2709-24. PubMed ID: 17125211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards improving compound selection in structure-based virtual screening.
    Waszkowycz B
    Drug Discov Today; 2008 Mar; 13(5-6):219-26. PubMed ID: 18342797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling robust QSAR.
    Polanski J; Bak A; Gieleciak R; Magdziarz T
    J Chem Inf Model; 2006; 46(6):2310-8. PubMed ID: 17125174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of multicomponent self-organizing regression (MCSOR) in QSAR, QSPR, and multivariate calibration: comparison with partial least-squares (PLS) and validation with large external data sets.
    Tuppurainen K; Korhonen SP; Ruuskanen J
    SAR QSAR Environ Res; 2006 Dec; 17(6):549-61. PubMed ID: 17162386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the virtues of automated quantitative structure-activity relationship: the new kid on the block.
    de Oliveira MT; Katekawa E
    Future Med Chem; 2018 Feb; 10(3):335-342. PubMed ID: 29393678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.
    Kovalishyn V; Tanchuk V; Charochkina L; Semenuta I; Prokopenko V
    J Mol Graph Model; 2012 Feb; 32():32-8. PubMed ID: 22023934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D QSAR selectivity analyses of carbonic anhydrase inhibitors: insights for the design of isozyme selective inhibitors.
    Weber A; Böhm M; Supuran CT; Scozzafava A; Sotriffer CA; Klebe G
    J Chem Inf Model; 2006; 46(6):2737-60. PubMed ID: 17125213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of self-organizing neural networks in virtual screening and diversity selection.
    Selzer P; Ertl P
    J Chem Inf Model; 2006; 46(6):2319-23. PubMed ID: 17125175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Better compounds faster: the development and exploitation of a desktop predictive chemistry toolkit.
    Cumming JG; Winter J; Poirrette A
    Drug Discov Today; 2012 Sep; 17(17-18):923-7. PubMed ID: 22464945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of molecular topology to the prediction of the antimalarial activity of a group of uracil-based acyclic and deoxyuridine compounds.
    García-Domenech R; López-Peña W; Sanchez-Perdomo Y; Sanders JR; Sierra-Araujo MM; Zapata C; Gálvez J
    Int J Pharm; 2008 Nov; 363(1-2):78-84. PubMed ID: 18675892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.