These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 23317435)
1. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. La Rocca G; Lo Iacono M; Corsello T; Corrao S; Farina F; Anzalone R Curr Stem Cell Res Ther; 2013 Jan; 8(1):100-13. PubMed ID: 23317435 [TBL] [Abstract][Full Text] [Related]
2. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193 [TBL] [Abstract][Full Text] [Related]
3. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Liu S; Hou KD; Yuan M; Peng J; Zhang L; Sui X; Zhao B; Xu W; Wang A; Lu S; Guo Q J Biosci Bioeng; 2014 Feb; 117(2):229-235. PubMed ID: 23899897 [TBL] [Abstract][Full Text] [Related]
5. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Saeidi M; Masoud A; Shakiba Y; Hadjati J; Mohyeddin Bonab M; Nicknam MH; Latifpour M; Nikbin B Iran J Allergy Asthma Immunol; 2013 Mar; 12(1):37-49. PubMed ID: 23454777 [TBL] [Abstract][Full Text] [Related]
6. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. Shivakumar SB; Bharti D; Subbarao RB; Jang SJ; Park JS; Ullah I; Park JK; Byun JH; Park BW; Rho GJ J Cell Biochem; 2016 Oct; 117(10):2397-412. PubMed ID: 27038129 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746 [TBL] [Abstract][Full Text] [Related]
9. Expression Profile of New Marker Genes Involved in Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Chondrocytes, Osteoblasts, Adipocytes and Neural-like Cells. Stefańska K; Nemcova L; Blatkiewicz M; Żok A; Kaczmarek M; Pieńkowski W; Mozdziak P; Piotrowska-Kempisty H; Kempisty B Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629120 [TBL] [Abstract][Full Text] [Related]
10. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Kim MJ; Shin KS; Jeon JH; Lee DR; Shim SH; Kim JK; Cha DH; Yoon TK; Kim GJ Cell Tissue Res; 2011 Oct; 346(1):53-64. PubMed ID: 21987220 [TBL] [Abstract][Full Text] [Related]
11. Isolation of mesenchymal stromal cells from extraembryonic tissues and their characteristics. Veryasov VN; Savilova AM; Buyanovskaya OA; Chulkina MM; Pavlovich SV; Sukhikh GT Bull Exp Biol Med; 2014 May; 157(1):119-24. PubMed ID: 24909727 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911 [TBL] [Abstract][Full Text] [Related]
13. Isolation, Expansion, and Characterization of Wharton's Jelly-Derived Mesenchymal Stromal Cell: Method to Identify Functional Passages for Experiments. Aung SW; Abu Kasim NH; Ramasamy TS Methods Mol Biol; 2019; 2045():323-335. PubMed ID: 31201682 [TBL] [Abstract][Full Text] [Related]
14. Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays. Stefańska K; Nemcova L; Blatkiewicz M; Pieńkowski W; Ruciński M; Zabel M; Mozdziak P; Podhorska-Okołów M; Dzięgiel P; Kempisty B Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373173 [TBL] [Abstract][Full Text] [Related]
15. Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture. Vakhrushev IV; Basok YB; Baskaev KK; Novikova VD; Leonov GE; Grigoriev AM; Belova AD; Kirsanova LA; Lupatov AY; Burunova VV; Kovalev AV; Makarevich PI; Sevastianov VI; Yarygin KN Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891883 [TBL] [Abstract][Full Text] [Related]
16. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications. Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193 [TBL] [Abstract][Full Text] [Related]
18. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization. Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792 [TBL] [Abstract][Full Text] [Related]
19. Induction of Human Wharton's Jelly of Umbilical Cord Derived Mesenchymal Stem Cells to Be Chondrocytes and Transplantation in Guinea Pig Model with Spontaneous Osteoarthritis. Nadeem G; Theerakittayakorn K; Somredngan S; Thi Nguyen H; Boonthai T; Samruan W; Tangkanjanavelukul P; Parnpai R Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891860 [TBL] [Abstract][Full Text] [Related]
20. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells. Al Madhoun A; Marafie SK; Haddad D; Melhem M; Abu-Farha M; Ali H; Sindhu S; Atari M; Al-Mulla F Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]