These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23317473)

  • 21. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth plate extracellular matrix-derived scaffolds for large bone defect healing.
    Cunniffe GM; Díaz-Payno PJ; Ramey JS; Mahon OR; Dunne A; Thompson EM; O'Brien FJ; Kelly DJ
    Eur Cell Mater; 2017 Feb; 33():130-142. PubMed ID: 28197989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects: A Systematic Review.
    Rossi N; Hadad H; Bejar-Chapa M; Peretti GM; Randolph MA; Redmond RW; Guastaldi FPS
    Tissue Eng Part B Rev; 2023 Oct; 29(5):457-472. PubMed ID: 36905366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BMP2 expressing genetically engineered mesenchymal stem cells on composite fibrous scaffolds for enhanced bone regeneration in segmental defects.
    Kuttappan S; Anitha A; Minsha MG; Menon PM; Sivanarayanan TB; Vijayachandran LS; Nair MB
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():239-248. PubMed ID: 29407153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration.
    Macías I; Alcorta-Sevillano N; Infante A; Rodríguez CI
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration.
    Feng L; Milner DJ; Xia C; Nye HL; Redwood P; Cameron JA; Stocum DL; Fang N; Jasiuk I
    Tissue Eng Part A; 2011 Mar; 17(5-6):691-701. PubMed ID: 20929280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies.
    Korpershoek JV; de Windt TS; Hagmeijer MH; Vonk LA; Saris DB
    Orthop J Sports Med; 2017 Feb; 5(2):2325967117690131. PubMed ID: 28321424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: a pilot study on rats.
    Rentsch C; Rentsch B; Breier A; Spekl K; Jung R; Manthey S; Scharnweber D; Zwipp H; Biewener A
    J Biomed Mater Res A; 2010 Dec; 95(3):964-72. PubMed ID: 20824650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic review of animal and clinical studies on the use of scaffolds for urethral repair.
    Qi N; Li WJ; Tian H
    J Huazhong Univ Sci Technolog Med Sci; 2016 Feb; 36(1):111-117. PubMed ID: 26838750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Three-Dimensional Scaffolds in Treating Long Bone Defects: Evidence from Preclinical and Clinical Literature-A Systematic Review.
    Roffi A; Krishnakumar GS; Gostynska N; Kon E; Candrian C; Filardo G
    Biomed Res Int; 2017; 2017():8074178. PubMed ID: 28852649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair.
    Li Y; Wang J; Wang Y; Du W; Wang S
    J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Porous Gelapin-Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits.
    Moshiri A; Shahrezaee M; Shekarchi B; Oryan A; Azma K
    Calcif Tissue Int; 2015 Jun; 96(6):552-64. PubMed ID: 25804980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.