These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23317473)

  • 41. Three-Dimensional Porous Gelapin-Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits.
    Moshiri A; Shahrezaee M; Shekarchi B; Oryan A; Azma K
    Calcif Tissue Int; 2015 Jun; 96(6):552-64. PubMed ID: 25804980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An experimental study of bioderived bone to repair bone defects as a scaffold of tissue engineering.
    Xu L; Zhi-Ming Y; Xue-Mei L
    Int Surg; 2008; 93(6):377-80. PubMed ID: 20085049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair.
    Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R
    J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis.
    Sun K; Zhou Z; Ju X; Zhou Y; Lan J; Chen D; Chen H; Liu M; Pang L
    Stem Cell Res Ther; 2016 Oct; 7(1):151. PubMed ID: 27724974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering bone grafts with enhanced bone marrow and native scaffolds.
    Hung BP; Salter EK; Temple J; Mundinger GS; Brown EN; Brazio P; Rodriguez ED; Grayson WL
    Cells Tissues Organs; 2013; 198(2):87-98. PubMed ID: 24021248
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model.
    Xiao C; Zhou H; Ge S; Tang T; Hou H; Luo M; Fan X
    Int J Mol Med; 2010 Oct; 26(4):517-25. PubMed ID: 20818491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.
    Florczyk SJ; Leung M; Li Z; Huang JI; Hopper RA; Zhang M
    J Biomed Mater Res A; 2013 Oct; 101(10):2974-83. PubMed ID: 23737120
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.
    de Misquita MR; Bentini R; Goncalves F
    J Biomater Appl; 2016 Nov; 31(5):625-636. PubMed ID: 27334129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.
    Lovati AB; Lopa S; Recordati C; Talò G; Turrisi C; Bottagisio M; Losa M; Scanziani E; Moretti M
    Calcif Tissue Int; 2016 Aug; 99(2):209-23. PubMed ID: 27075029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells.
    Endres S; Hiebl B; Hägele J; Beltzer C; Fuhrmann R; Jäger V; Almeida M; Costa E; Santos C; Traupe H; Jung EM; Prantl L; Jung F; Wilke A; Franke RP
    Clin Hemorheol Microcirc; 2011; 48(1):29-40. PubMed ID: 21876232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y
    Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large defect-tailored composite scaffolds for in vivo bone regeneration.
    Ronca A; Guarino V; Raucci MG; Salamanna F; Martini L; Zeppetelli S; Fini M; Kon E; Filardo G; Marcacci M; Ambrosio L
    J Biomater Appl; 2014 Nov; 29(5):715-27. PubMed ID: 24951457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Preclinical Models for the Testing of Bone Tissue-Engineered Constructs.
    Zeiter S; Koschitzki K; Alini M; Jakob F; Rudert M; Herrmann M
    Tissue Eng Part C Methods; 2020 Feb; 26(2):107-117. PubMed ID: 31808374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional macroporous materials for tissue engineering of craniofacial bone.
    Shakya AK; Kandalam U
    Br J Oral Maxillofac Surg; 2017 Nov; 55(9):875-891. PubMed ID: 29056355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.