These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23317812)

  • 1. Theoretical comments on reproducibility and normalization of TWA measures.
    Sassi R; Mainardi LT
    J Electrocardiol; 2013; 46(2):132-5. PubMed ID: 23317812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-wave alternans: lessons learned from a biophysical ECG model.
    Sassi R; Mainardi LT
    J Electrocardiol; 2012; 45(6):566-70. PubMed ID: 22958909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Lead dependence of the TWA measures" and "TWA dependence on T amplitude".
    Madias JE
    J Electrocardiol; 2013; 46(2):131. PubMed ID: 23266068
    [No Abstract]   [Full Text] [Related]  

  • 4. Amplitude of Dominant T-Wave Alternans assessment on ECGs obtained from a biophysical model.
    Sassi R; Mainardi LT; Cerutti S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5872-5. PubMed ID: 22255675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of resistive barrier location on the relationship between T-wave alternans and cellular repolarization alternans: a 1-D modeling study.
    Doshi AN; Idriss SF
    J Electrocardiol; 2010; 43(6):566-71. PubMed ID: 21040826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body surface projection of action potential duration alternans: a combined clinical-modeling study with implications for improving T-wave alternans detection.
    Selvaraj RJ; Suszko AM; Subramanian A; Sivananthan D; Hill A; Nanthakumar K; Chauhan VS
    Heart Rhythm; 2009 Aug; 6(8):1211-9. PubMed ID: 19632636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some theoretical results on the observability of repolarization heterogeneity on surface ECG.
    Mainardi L; Sassi R
    J Electrocardiol; 2013; 46(3):270-5. PubMed ID: 23622343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between extracellular T-wave height, T-wave alternans amplitude, and tissue action potential alternans: a 1-dimensional computer modeling study.
    Doshi AN; Idriss SF
    J Electrocardiol; 2009; 42(6):549-54. PubMed ID: 19616219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-simulated alternative modes of U-wave genesis.
    Depolli M; Avbelj V; Trobec R
    J Cardiovasc Electrophysiol; 2008 Jan; 19(1):84-9. PubMed ID: 17916148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An estimate of the dispersion of repolarization times based on a biophysical model of the ECG.
    Sassi R; Mainardi LT
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3396-405. PubMed ID: 21878404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of T-wave alternans using the dominant T-wave paradigm.
    Mainardi L; Sassi R
    J Electrocardiol; 2011; 44(2):119-25. PubMed ID: 21353060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inverse problem of bioelectricity: an evaluation.
    van Oosterom A
    Med Biol Eng Comput; 2012 Sep; 50(9):891-902. PubMed ID: 22843426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of Microvolt T-Wave Alternans in Patients With Long QT Syndrome and Its Association With Torsade de Pointes.
    Takasugi N; Goto H; Takasugi M; Verrier RL; Kuwahara T; Kubota T; Toyoshi H; Nakashima T; Kawasaki M; Nishigaki K; Minatoguchi S
    Circ Arrhythm Electrophysiol; 2016 Feb; 9(2):e003206. PubMed ID: 26839386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-wave alternans, restitution of human action potential duration, and outcome.
    Narayan SM; Franz MR; Lalani G; Kim J; Sastry A
    J Am Coll Cardiol; 2007 Dec; 50(25):2385-92. PubMed ID: 18154963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations to investigate the causes of T-wave notching.
    Galeotti L; van Dam PM; Johannesen L; Vicente J; Strauss DG
    J Electrocardiol; 2015; 48(6):927-32. PubMed ID: 26341648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling.
    Hopenfeld B; Ashikaga H
    Ann Biomed Eng; 2010 Mar; 38(3):1060-70. PubMed ID: 20127511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time feedback of dynamic cardiac repolarization properties.
    Western D; Taggart P; Hanson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():114-7. PubMed ID: 21095649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy.
    Merchant FM; Armoundas AA
    Circulation; 2012 Jan; 125(3):539-49. PubMed ID: 22271847
    [No Abstract]   [Full Text] [Related]  

  • 19. Abnormal intracellular calcium handling underlying T-wave alternans and its hysteresis.
    Bao M; Zhang J; Huang C; Jiang H; Liu J; Zhao D
    Cardiology; 2007; 108(3):147-56. PubMed ID: 17085935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of the human atrial anatomy and electrophysiology.
    Dössel O; Krueger MW; Weber FM; Wilhelms M; Seemann G
    Med Biol Eng Comput; 2012 Aug; 50(8):773-99. PubMed ID: 22718317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.