These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23317839)

  • 1. Brain mechanisms controlling decision making and motor planning.
    Ramakrishnan A; Murthy A
    Prog Brain Res; 2013; 202():321-45. PubMed ID: 23317839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner.
    Dominguez-Vargas AU; Schneider L; Wilke M; Kagan I
    J Neurosci; 2017 Feb; 37(8):2234-2257. PubMed ID: 28119401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural accumulator models of decision making in eye movements.
    Cutsuridis V
    Adv Exp Med Biol; 2010; 657():61-72. PubMed ID: 20020342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The time course of saccadic decision making: dynamic field theory.
    Wilimzig C; Schneider S; Schöner G
    Neural Netw; 2006 Oct; 19(8):1059-74. PubMed ID: 16942860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of evidence accumulation in a perceptual decision task.
    Liu T; Pleskac TJ
    J Neurophysiol; 2011 Nov; 106(5):2383-98. PubMed ID: 21849612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades.
    Brown JW; Bullock D; Grossberg S
    Neural Netw; 2004 May; 17(4):471-510. PubMed ID: 15109680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Decision making and the brain].
    Sakagami M
    Nihon Seirigaku Zasshi; 2004; 66(11):358-65. PubMed ID: 15609641
    [No Abstract]   [Full Text] [Related]  

  • 8. From sensory evidence to a motor command.
    Schall JD
    Curr Biol; 2000 Jun; 10(11):R404-6. PubMed ID: 10837238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Touch and go: decision-making mechanisms in somatosensation.
    Romo R; Salinas E
    Annu Rev Neurosci; 2001; 24():107-37. PubMed ID: 11283307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual inhibition and capacity sharing during parallel preparation of serial eye movements.
    Ray S; Bhutani N; Murthy A
    J Vis; 2012 Mar; 12(3):17. PubMed ID: 22434620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of eye movements in decision making and the prospect of exposure effects.
    Bird GD; Lauwereyns J; Crawford MT
    Vision Res; 2012 May; 60():16-21. PubMed ID: 22425778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intention, action planning, and decision making in parietal-frontal circuits.
    Andersen RA; Cui H
    Neuron; 2009 Sep; 63(5):568-83. PubMed ID: 19755101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys.
    Fujii N; Mushiake H; Tanji J
    J Neurophysiol; 2002 Apr; 87(4):2158-66. PubMed ID: 11929933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons in the rostral cingulate motor area monitor multiple phases of visuomotor behavior with modest parametric selectivity.
    Hoshi E; Sawamura H; Tanji J
    J Neurophysiol; 2005 Jul; 94(1):640-56. PubMed ID: 15703223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance.
    Marcos E; Pani P; Brunamonti E; Deco G; Ferraina S; Verschure P
    Neuron; 2013 Apr; 78(2):249-55. PubMed ID: 23622062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The structure of the neuronal activity of the caudate nucleus in monkeys making a decision and realizing the motor program in different variants of a task of delayed spatial choice].
    Shuvaev VT; Shefer VI
    Fiziol Zh Im I M Sechenova; 1994 Jan; 80(1):31-40. PubMed ID: 7522766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields.
    Silver MR; Grossberg S; Bullock D; Histed MH; Miller EK
    Neural Netw; 2012 Feb; 26():29-58. PubMed ID: 22079270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full reaction time distributions reveal the complexity of neural decision-making.
    Noorani I; Carpenter RH
    Eur J Neurosci; 2011 Jun; 33(11):1948-51. PubMed ID: 21645090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural model of decision-making by the superior colicullus in an antisaccade task.
    Cutsuridis V; Smyrnis N; Evdokimidis I; Perantonis S
    Neural Netw; 2007 Aug; 20(6):690-704. PubMed ID: 17446043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.