BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23317902)

  • 1. Intravital imaging of autoreactive T cells in living animals.
    Kawakami N; Bartholomäus I; Pesic M; Kyratsous NI
    Methods Cell Biol; 2013; 113():149-68. PubMed ID: 23317902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravital two-photon imaging of T-cell priming and tolerance in the lymph node.
    Celli S; Bousso P
    Methods Mol Biol; 2007; 380():355-63. PubMed ID: 17876105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An autoimmunity odyssey: how autoreactive T cells infiltrate into the CNS.
    Kawakami N; Bartholomäus I; Pesic M; Mues M
    Immunol Rev; 2012 Jul; 248(1):140-55. PubMed ID: 22725959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravital Imaging of T Cells Within the Spinal Cord.
    Kawakami N
    Methods Mol Biol; 2018; 1763():119-127. PubMed ID: 29476493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen.
    Park C; Hwang IY; Kehrl JH
    Methods Mol Biol; 2018; 1707():193-205. PubMed ID: 29388109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live Imaging of Interstitial T Cell Migration Using Lymph Node Slices.
    Katakai T
    Methods Mol Biol; 2018; 1763():29-42. PubMed ID: 29476486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord neuroepithelial progenitor cells display developmental plasticity when co-cultured with embryonic spinal cord slices at different stages of development.
    O' Leary CJ; McDermott KW
    Dev Dyn; 2011 Apr; 240(4):785-95. PubMed ID: 21400633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury.
    Liu Y; He ZJ; Xu B; Wu QZ; Liu G; Zhu H; Zhong Q; Deng DY; Ai H; Yue Q; Wei Y; Jun S; Zhou G; Gong QY
    Brain Res; 2011 May; 1391():24-35. PubMed ID: 21420939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing fluorescence excitation and detection for intravital two-photon microscopy.
    Suan D; Hampton HR; Tomura M; Kanagawa O; Chtanova T; Phan TG
    Methods Cell Biol; 2013; 113():311-23. PubMed ID: 23317908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon intravital multicolour imaging to study metastatic behaviour of cancer cells in vivo.
    Le Dévédec SE; van Roosmalen W; Pont C; Lalai R; de Bont H; van de Water B
    Methods Mol Biol; 2011; 769():331-49. PubMed ID: 21748686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells.
    Mothe AJ; Kulbatski I; van Bendegem RL; Lee L; Kobayashi E; Keating A; Tator CH
    J Histochem Cytochem; 2005 Oct; 53(10):1215-26. PubMed ID: 15983120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes.
    Choe K; Hontani Y; Wang T; Hebert E; Ouzounov DG; Lai K; Singh A; Béguelin W; Melnick AM; Xu C
    Nat Immunol; 2022 Feb; 23(2):330-340. PubMed ID: 35087231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo magnetic resonance imaging tracking of SPIO-labeled human umbilical cord mesenchymal stem cells.
    Hu SL; Lu PG; Zhang LJ; Li F; Chen Z; Wu N; Meng H; Lin JK; Feng H
    J Cell Biochem; 2012 Mar; 113(3):1005-12. PubMed ID: 22065605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravital two-photon imaging of natural killer cells and dendritic cells in lymph nodes.
    Celli S; Breart B; Bousso P
    Methods Mol Biol; 2008; 415():119-26. PubMed ID: 18370151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins.
    Mor F; Cohen IR
    J Clin Invest; 1992 Dec; 90(6):2447-55. PubMed ID: 1281835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of MOG-stimulated Th1 type "light up" (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE).
    Yura M; Takahashi I; Serada M; Koshio T; Nakagami K; Yuki Y; Kiyono H
    J Autoimmun; 2001 Aug; 17(1):17-25. PubMed ID: 11488634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis.
    Anderson SA; Shukaliak-Quandt J; Jordan EK; Arbab AS; Martin R; McFarland H; Frank JA
    Ann Neurol; 2004 May; 55(5):654-9. PubMed ID: 15122705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue.
    Blits B; Kitay BM; Farahvar A; Caperton CV; Dietrich WD; Bunge MB
    Restor Neurol Neurosci; 2005; 23(5-6):313-24. PubMed ID: 16477093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravital two-photon imaging of adoptively transferred B lymphocytes in inguinal lymph nodes.
    Park C; Hwang IY; Kehrl JH
    Methods Mol Biol; 2009; 571():199-207. PubMed ID: 19763968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.
    Jendelová P; Herynek V; Urdzíková L; Glogarová K; Kroupová J; Andersson B; Bryja V; Burian M; Hájek M; Syková E
    J Neurosci Res; 2004 Apr; 76(2):232-43. PubMed ID: 15048921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.