These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23318215)

  • 1. Swimming near the substrate: a simple robotic model of stingray locomotion.
    Blevins E; Lauder GV
    Bioinspir Biomim; 2013 Mar; 8(1):016005. PubMed ID: 23318215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible propulsors in ground effect.
    Quinn DB; Lauder GV; Smits AJ
    Bioinspir Biomim; 2014 Sep; 9(3):036008. PubMed ID: 24667542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending continuous structures with SMAs: a novel robotic fish design.
    Rossi C; Colorado J; Coral W; Barrientos A
    Bioinspir Biomim; 2011 Dec; 6(4):045005. PubMed ID: 22126900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
    Low KH; Chong CW
    Bioinspir Biomim; 2010 Dec; 5(4):046002. PubMed ID: 21068469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi.
    Blevins EL; Lauder GV
    J Exp Biol; 2012 Sep; 215(Pt 18):3231-41. PubMed ID: 22693031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer.
    Bergmann M; Iollo A; Mittal R
    Bioinspir Biomim; 2014 Sep; 9(4):046001. PubMed ID: 25252883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi.
    Macesic LJ; Mulvaney D; Blevins EL
    Zoology (Jena); 2013 Jun; 116(3):144-50. PubMed ID: 23477972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.
    Park YJ; Huh TM; Park D; Cho KJ
    Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.