BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23318376)

  • 1. Dosimetric characteristics of electron beams produced by two mobile accelerators, Novac7 and Liac, for intraoperative radiation therapy through Monte Carlo simulation.
    Righi S; Karaj E; Felici G; Di Martino F
    J Appl Clin Med Phys; 2013 Jan; 14(1):3678. PubMed ID: 23318376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
    Pimpinella M; Mihailescu D; Guerra AS; Laitano RF
    Phys Med Biol; 2007 Oct; 52(20):6197-214. PubMed ID: 17921580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators.
    Baghani HR; Aghamiri SM; Mahdavi SR; Akbari ME; Mirzaei HR
    J Appl Clin Med Phys; 2015 Mar; 16(2):5017. PubMed ID: 26103175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of parallel-plate ionization chambers in reference dosimetry of NOVAC and LIAC
    Scalchi P; Ciccotelli A; Felici G; Petrucci A; Massafra R; Piazzi V; D'Avenia P; Cavagnetto F; Cattani F; Romagnoli R; Soriani A
    Med Phys; 2017 Jan; 44(1):321-332. PubMed ID: 28102948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.
    Sánchez-Doblado F; Andreo P; Capote R; Leal A; Perucha M; Arráns R; Núñez L; Mainegra E; Lagares JI; Carrasco E
    Phys Med Biol; 2003 Jul; 48(14):2081-99. PubMed ID: 12894972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
    Dalaryd M; Knöös T; Ceberg C
    Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of the photon beam characteristics from medical linear accelerators.
    Kim HK; Han SJ; Kim JL; Kim BH; Chang SY; Lee JK
    Radiat Prot Dosimetry; 2006; 119(1-4):510-3. PubMed ID: 16644954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment head disassembly to improve the accuracy of large electron field simulation.
    Faddegon BA; Sawkey D; O'Shea T; McEwen M; Ross C
    Med Phys; 2009 Oct; 36(10):4577-91. PubMed ID: 19928089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commissioning of beam shaper applicator for conformal intraoperative electron radiotherapy.
    Heidarloo N; Baghani HR; Aghamiri SM; Mahdavi SR; Akbari ME
    Appl Radiat Isot; 2017 May; 123():69-81. PubMed ID: 28260609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Output factors of ionization chambers and solid state detectors for mobile intraoperative radiotherapy (IORT) accelerator electron beams.
    Güngör G; Aydın G; Mustafayev TZ; Özyar E
    J Appl Clin Med Phys; 2019 Feb; 20(2):13-23. PubMed ID: 30632271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator.
    Vassiliev ON; Titt U; Kry SF; Pönisch F; Gillin MT; Mohan R
    Med Phys; 2006 Apr; 33(4):820-7. PubMed ID: 16696457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator.
    Robatjazi M; Tanha K; Mahdavi SR; Baghani HR; Mirzaei HR; Mousavi M; Nafissi N; Akbari E
    J Biomed Phys Eng; 2018 Mar; 8(1):43-52. PubMed ID: 29732339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of a medical linear accelerator for radiotherapy use.
    Serrano B; Hachem A; Franchisseur E; Hérault J; Marcié S; Costa A; Bensadoun RJ; Barthe J; Gérard JP
    Radiat Prot Dosimetry; 2006; 119(1-4):506-9. PubMed ID: 16644964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commissioning, dosimetric characterization and machine performance assessment of the LIAC HWL mobile accelerator for Intraoperative Radiotherapy.
    Winkler P; Odreitz-Stark S; Haas E; Thalhammer M; Partl R
    Z Med Phys; 2020 Nov; 30(4):279-288. PubMed ID: 32682654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo-based determination of radiation leakage dose around a dedicated IOERT accelerator.
    Baghani HR; Hosseini Aghdam SR; Robatjazi M; Mahdavi SR
    Radiat Environ Biophys; 2019 May; 58(2):263-276. PubMed ID: 30972494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams.
    Lye JE; Butler DJ; Oliver CP; Alves A; Lehmann J; Gibbons FP; Williams IM
    Phys Med Biol; 2016 Jul; 61(14):N362-72. PubMed ID: 27366933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.