BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23318411)

  • 1. How does the boron concentration affect hydrogen storage in lithium decorated zero- and two-dimensional boron-carbon compounds?
    Ye XJ; Liu CS; Jia R; Zeng Z; Zhong W
    Phys Chem Chem Phys; 2013 Feb; 15(7):2507-13. PubMed ID: 23318411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.
    Liu CS; An H; Guo LJ; Zeng Z; Ju X
    J Chem Phys; 2011 Jan; 134(2):024522. PubMed ID: 21241135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B36.
    Liu CS; Wang X; Ye XJ; Yan X; Zeng Z
    J Chem Phys; 2014 Nov; 141(19):194306. PubMed ID: 25416890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning hydrogen storage in lithium-functionalized BC2N sheets by doping with boron and carbon.
    Qiu NX; Zhang CH; Xue Y
    Chemphyschem; 2014 Oct; 15(14):3015-25. PubMed ID: 25056204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.
    Deng QM; Zhao L; Luo YH; Zhang M; Zhao LX; Zhao Y
    Nanoscale; 2011 Nov; 3(11):4824-9. PubMed ID: 21997243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage.
    Hu ZY; Shao X; Wang D; Liu LM; Johnson JK
    J Chem Phys; 2014 Aug; 141(8):084711. PubMed ID: 25173034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage based on physisorption.
    Scanlon LG; Feld WA; Balbuena PB; Sandi G; Duan X; Underwood KA; Hunter N; Mack J; Rottmayer MA; Tsao M
    J Phys Chem B; 2009 Apr; 113(14):4708-17. PubMed ID: 19275199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of hydrogen adsorption in metal-doped COF-10.
    Wu MM; Wang Q; Sun Q; Jena P; Kawazoe Y
    J Chem Phys; 2010 Oct; 133(15):154706. PubMed ID: 20969418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron-double-ring sheet, fullerene, and nanotubes: potential hydrogen storage materials.
    Wang J; Zhao HY; Liu Y
    Chemphyschem; 2014 Nov; 15(16):3453-9. PubMed ID: 25139442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene.
    Tavhare P; Deshmukh A; Chaudhari A
    Phys Chem Chem Phys; 2016 Dec; 19(1):681-694. PubMed ID: 27918041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcing the tetracene-based two-dimensional C
    Subramani M; Rajamani A; Subramaniam V; Hatshan MR; Gopi S; Ramasamy S
    Environ Res; 2022 Mar; 204(Pt B):112114. PubMed ID: 34571036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study on the hydrogen adsorption capacity of various lithium-doped boron hydrides.
    Pan S; Giri S; Chattaraj PK
    J Comput Chem; 2012 Feb; 33(4):425-34. PubMed ID: 22121031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted lithium-boron compounds under high pressure.
    Peng F; Miao M; Wang H; Li Q; Ma Y
    J Am Chem Soc; 2012 Nov; 134(45):18599-605. PubMed ID: 23088280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li-decorated carbon ene-yne as a potential high-capacity hydrogen storage medium.
    Li Q; Wang H; Sun T; Zhang L
    Phys Chem Chem Phys; 2018 Oct; 20(37):24011-24018. PubMed ID: 30215647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study of hydrogen storage on Li12C60.
    Sun Q; Jena P; Wang Q; Marquez M
    J Am Chem Soc; 2006 Aug; 128(30):9741-5. PubMed ID: 16866529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the hydrogen storage performance of t-graphene-like two-dimensional boron nitride upon selected lithium decoration.
    El Kassaoui M; Lakhal M; Benyoussef A; El Kenz A; Loulidi M; Mounkachi O
    Phys Chem Chem Phys; 2022 Jun; 24(24):15048-15059. PubMed ID: 35695859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach.
    Putungan DB; Lin SH; Wei CM; Kuo JL
    Phys Chem Chem Phys; 2015 May; 17(17):11367-74. PubMed ID: 25849099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into designing metallacarborane based room temperature hydrogen storage media.
    Bora PL; Singh AK
    J Chem Phys; 2013 Oct; 139(16):164319. PubMed ID: 24182041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study.
    Lu R; Rao D; Meng Z; Zhang X; Xu G; Liu Y; Kan E; Xiao C; Deng K
    Phys Chem Chem Phys; 2013 Oct; 15(38):16120-6. PubMed ID: 23986291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.