These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23318639)

  • 1. Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus.
    Lim CY; Reversade B; Knowles BB; Solter D
    Development; 2013 Feb; 140(4):853-60. PubMed ID: 23318639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic linker histones cause loss of mesodermal competence in Xenopus.
    Steinbach OC; Wolffe AP; Rupp RA
    Nature; 1997 Sep; 389(6649):395-9. PubMed ID: 9311783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling.
    Faucourt M; Houliston E; Besnardeau L; Kimelman D; Lepage T
    Dev Biol; 2001 Jan; 229(2):287-306. PubMed ID: 11203696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The globular domain of histone H1 is sufficient to direct specific gene repression in early Xenopus embryos.
    Vermaak D; Steinbach OC; Dimitrov S; Rupp RA; Wolffe AP
    Curr Biol; 1998 Apr; 8(9):533-6. PubMed ID: 9560345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.
    Lin CJ; Conti M; Ramalho-Santos M
    Development; 2013 Sep; 140(17):3624-34. PubMed ID: 23903189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.
    Dimitrov S; Wolffe AP
    EMBO J; 1996 Nov; 15(21):5897-906. PubMed ID: 8918467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sebox regulates mesoderm formation in early amphibian embryos.
    Chen G; Tan R; Tao Q
    Dev Dyn; 2015 Nov; 244(11):1415-26. PubMed ID: 26285158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone acetylation influences both gene expression and development of Xenopus laevis.
    Almouzni G; Khochbin S; Dimitrov S; Wolffe AP
    Dev Biol; 1994 Oct; 165(2):654-69. PubMed ID: 7958429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type.
    Dimitrov S; Almouzni G; Dasso M; Wolffe AP
    Dev Biol; 1993 Nov; 160(1):214-27. PubMed ID: 8224538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula.
    Evren S; Wen JW; Luu O; Damm EW; Nagel M; Winklbauer R
    Development; 2014 Oct; 141(19):3649-61. PubMed ID: 25209247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin accessibility and histone acetylation in the regulation of competence in early development.
    Esmaeili M; Blythe SA; Tobias JW; Zhang K; Yang J; Klein PS
    Dev Biol; 2020 Jun; 462(1):20-35. PubMed ID: 32119833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene.
    Di Caro V; Cavalieri V; Melfi R; Spinelli G
    J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program.
    Chiu WT; Charney Le R; Blitz IL; Fish MB; Li Y; Biesinger J; Xie X; Cho KW
    Development; 2014 Dec; 141(23):4537-47. PubMed ID: 25359723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus.
    Szenker E; Lacoste N; Almouzni G
    Cell Rep; 2012 Jun; 1(6):730-40. PubMed ID: 22813747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction.
    Wawersik S; Evola C; Whitman M
    Dev Biol; 2005 Jan; 277(2):425-42. PubMed ID: 15617685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
    Hemmati-Brivanlou A; Thomsen GH
    Dev Genet; 1995; 17(1):78-89. PubMed ID: 7554498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
    Abe T; Furue M; Kondow A; Matsuzaki K; Asashima M
    Mech Dev; 2005 May; 122(5):671-80. PubMed ID: 15817224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequences mediating the transcriptional response of the Mix.2 homeobox gene to mesoderm induction.
    Vize PD
    Dev Biol; 1996 Jul; 177(1):226-31. PubMed ID: 8660890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional silencing of the mouse mammary tumor virus promoter through chromatin remodeling is concomitant with histone H1 phosphorylation and histone H3 hyperphosphorylation at M phase.
    Bhattacharjee RN; Archer TK
    Virology; 2006 Mar; 346(1):1-6. PubMed ID: 16458342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.