These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23318675)

  • 1. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site.
    Herndon CA; Ankenbruck N; Lester B; Bailey J; Fromm L
    Exp Cell Res; 2013 Mar; 319(5):718-30. PubMed ID: 23318675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.
    Herndon CA; Ankenbruck N; Fromm L
    J Neurosci Res; 2014 Feb; 92(2):174-84. PubMed ID: 24272970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Dystroglycan is essential for the induction of Egr3, a transcription factor important in muscle spindle formation.
    Williams S; Jacobson C
    Dev Neurobiol; 2010 Jun; 70(7):498-507. PubMed ID: 20213761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphine activates the E twenty six-like transcription factor-1/serum response factor pathway via extracellular signal-regulated kinases 1/2 in F11 cells derived from dorsal root ganglia neurons.
    Rothe K; Solinski HJ; Boekhoff I; Gudermann T; Breit A
    J Pharmacol Exp Ther; 2012 Jul; 342(1):41-52. PubMed ID: 22454534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3.
    Tourtellotte WG; Milbrandt J
    Nat Genet; 1998 Sep; 20(1):87-91. PubMed ID: 9731539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grb2-associated binder-1 is required for extrafusal and intrafusal muscle fiber development.
    Park SY; Jang SY; Shin YK; Yoon BA; Lee HJ; Park HT
    Neuroreport; 2017 Jul; 28(10):604-609. PubMed ID: 28542067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeobox protein Hex facilitates serum responsive factor-mediated activation of the SM22alpha gene transcription in embryonic fibroblasts.
    Oyama Y; Kawai-Kowase K; Sekiguchi K; Sato M; Sato H; Yamazaki M; Ohyama Y; Aihara Y; Iso T; Okamaoto E; Nagai R; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1602-7. PubMed ID: 15242862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of myotube fate specification and intrafusal muscle fiber morphogenesis.
    Albert Y; Whitehead J; Eldredge L; Carter J; Gao X; Tourtellotte WG
    J Cell Biol; 2005 Apr; 169(2):257-68. PubMed ID: 15837802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
    Oliveira Fernandes M; Tourtellotte WG
    J Neurosci; 2015 Apr; 35(14):5566-78. PubMed ID: 25855173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PC12 cells regulate inducible cyclic AMP (cAMP) element repressor expression to differentially control cAMP response element-dependent transcription in response to nerve growth factor and cAMP.
    Chang JH; Vuppalanchi D; van Niekerk E; Trepel JB; Schanen NC; Twiss JL
    J Neurochem; 2006 Dec; 99(6):1517-30. PubMed ID: 17059558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells.
    Irrcher I; Hood DA
    J Appl Physiol (1985); 2004 Dec; 97(6):2207-13. PubMed ID: 15310743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for neuregulin1 signaling in muscle spindle differentiation.
    Hippenmeyer S; Shneider NA; Birchmeier C; Burden SJ; Jessell TM; Arber S
    Neuron; 2002 Dec; 36(6):1035-49. PubMed ID: 12495620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins.
    Rensen SS; Niessen PM; Long X; Doevendans PA; Miano JM; van Eys GJ
    Cardiovasc Res; 2006 Apr; 70(1):136-45. PubMed ID: 16451796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability.
    Ramanan N; Shen Y; Sarsfield S; Lemberger T; Schütz G; Linden DJ; Ginty DD
    Nat Neurosci; 2005 Jun; 8(6):759-67. PubMed ID: 15880109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in Ehrlich Lettré Ascites cells through a mechanism involving p38 mitogen-activated protein kinase.
    Gorbatenko A; Wiwel M; Klingberg H; Nielsen AB; Kapus A; Pedersen SF
    J Cell Physiol; 2011 Nov; 226(11):2857-68. PubMed ID: 21302281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysophosphatidic acid induces early growth response gene 1 expression in vascular smooth muscle cells: CRE and SRE mediate the transcription.
    Cui MZ; Laag E; Sun L; Tan M; Zhao G; Xu X
    Arterioscler Thromb Vasc Biol; 2006 May; 26(5):1029-35. PubMed ID: 16497989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exendin-4 induction of Egr-1 expression in INS-1 beta-cells: interaction of SRF, not YY1, with SRE site of rat Egr-1 promoter.
    Kim MJ; Kang JH; Chang SY; Jang HJ; Ryu GR; Ko SH; Jeong IK; Kim MS; Jo YH
    J Cell Biochem; 2008 Aug; 104(6):2261-71. PubMed ID: 18446785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway.
    René C; Taulan M; Iral F; Doudement J; L'Honoré A; Gerbon C; Demaille J; Claustres M; Romey MC
    Nucleic Acids Res; 2005; 33(16):5271-90. PubMed ID: 16170155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of tumor suppressor p53 by cAMP-responsive element-binding protein/AMP-activated protein kinase complex in response to glucose deprivation.
    Okoshi R; Ando K; Suenaga Y; Sang M; Kubo N; Kizaki H; Nakagawara A; Ozaki T
    Genes Cells; 2009 Dec; 14(12):1429-40. PubMed ID: 19930465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.