BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23318675)

  • 1. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site.
    Herndon CA; Ankenbruck N; Lester B; Bailey J; Fromm L
    Exp Cell Res; 2013 Mar; 319(5):718-30. PubMed ID: 23318675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.
    Herndon CA; Ankenbruck N; Fromm L
    J Neurosci Res; 2014 Feb; 92(2):174-84. PubMed ID: 24272970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Dystroglycan is essential for the induction of Egr3, a transcription factor important in muscle spindle formation.
    Williams S; Jacobson C
    Dev Neurobiol; 2010 Jun; 70(7):498-507. PubMed ID: 20213761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphine activates the E twenty six-like transcription factor-1/serum response factor pathway via extracellular signal-regulated kinases 1/2 in F11 cells derived from dorsal root ganglia neurons.
    Rothe K; Solinski HJ; Boekhoff I; Gudermann T; Breit A
    J Pharmacol Exp Ther; 2012 Jul; 342(1):41-52. PubMed ID: 22454534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3.
    Tourtellotte WG; Milbrandt J
    Nat Genet; 1998 Sep; 20(1):87-91. PubMed ID: 9731539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grb2-associated binder-1 is required for extrafusal and intrafusal muscle fiber development.
    Park SY; Jang SY; Shin YK; Yoon BA; Lee HJ; Park HT
    Neuroreport; 2017 Jul; 28(10):604-609. PubMed ID: 28542067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeobox protein Hex facilitates serum responsive factor-mediated activation of the SM22alpha gene transcription in embryonic fibroblasts.
    Oyama Y; Kawai-Kowase K; Sekiguchi K; Sato M; Sato H; Yamazaki M; Ohyama Y; Aihara Y; Iso T; Okamaoto E; Nagai R; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1602-7. PubMed ID: 15242862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of myotube fate specification and intrafusal muscle fiber morphogenesis.
    Albert Y; Whitehead J; Eldredge L; Carter J; Gao X; Tourtellotte WG
    J Cell Biol; 2005 Apr; 169(2):257-68. PubMed ID: 15837802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
    Oliveira Fernandes M; Tourtellotte WG
    J Neurosci; 2015 Apr; 35(14):5566-78. PubMed ID: 25855173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PC12 cells regulate inducible cyclic AMP (cAMP) element repressor expression to differentially control cAMP response element-dependent transcription in response to nerve growth factor and cAMP.
    Chang JH; Vuppalanchi D; van Niekerk E; Trepel JB; Schanen NC; Twiss JL
    J Neurochem; 2006 Dec; 99(6):1517-30. PubMed ID: 17059558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells.
    Irrcher I; Hood DA
    J Appl Physiol (1985); 2004 Dec; 97(6):2207-13. PubMed ID: 15310743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for neuregulin1 signaling in muscle spindle differentiation.
    Hippenmeyer S; Shneider NA; Birchmeier C; Burden SJ; Jessell TM; Arber S
    Neuron; 2002 Dec; 36(6):1035-49. PubMed ID: 12495620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins.
    Rensen SS; Niessen PM; Long X; Doevendans PA; Miano JM; van Eys GJ
    Cardiovasc Res; 2006 Apr; 70(1):136-45. PubMed ID: 16451796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability.
    Ramanan N; Shen Y; Sarsfield S; Lemberger T; Schütz G; Linden DJ; Ginty DD
    Nat Neurosci; 2005 Jun; 8(6):759-67. PubMed ID: 15880109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in Ehrlich Lettré Ascites cells through a mechanism involving p38 mitogen-activated protein kinase.
    Gorbatenko A; Wiwel M; Klingberg H; Nielsen AB; Kapus A; Pedersen SF
    J Cell Physiol; 2011 Nov; 226(11):2857-68. PubMed ID: 21302281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysophosphatidic acid induces early growth response gene 1 expression in vascular smooth muscle cells: CRE and SRE mediate the transcription.
    Cui MZ; Laag E; Sun L; Tan M; Zhao G; Xu X
    Arterioscler Thromb Vasc Biol; 2006 May; 26(5):1029-35. PubMed ID: 16497989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exendin-4 induction of Egr-1 expression in INS-1 beta-cells: interaction of SRF, not YY1, with SRE site of rat Egr-1 promoter.
    Kim MJ; Kang JH; Chang SY; Jang HJ; Ryu GR; Ko SH; Jeong IK; Kim MS; Jo YH
    J Cell Biochem; 2008 Aug; 104(6):2261-71. PubMed ID: 18446785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway.
    René C; Taulan M; Iral F; Doudement J; L'Honoré A; Gerbon C; Demaille J; Claustres M; Romey MC
    Nucleic Acids Res; 2005; 33(16):5271-90. PubMed ID: 16170155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of tumor suppressor p53 by cAMP-responsive element-binding protein/AMP-activated protein kinase complex in response to glucose deprivation.
    Okoshi R; Ando K; Suenaga Y; Sang M; Kubo N; Kizaki H; Nakagawara A; Ozaki T
    Genes Cells; 2009 Dec; 14(12):1429-40. PubMed ID: 19930465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.