These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23319169)

  • 1. The biomechanics of the human tongue.
    Kajee Y; Pelteret JP; Reddy BD
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):492-514. PubMed ID: 23319169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of soft tissues in the human upper airway.
    Pelteret JP; Reddy BD
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):111-32. PubMed ID: 25830209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a computational biomechanical model of the human upper-airway soft-tissues toward simulating obstructive sleep apnea.
    Pelteret JP; Reddy BD
    Clin Anat; 2014 Mar; 27(2):182-200. PubMed ID: 24515574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.
    Gras LL; Mitton D; Crevier-Denoix N; Laporte S
    Comput Methods Biomech Biomed Engin; 2012; 15(1):13-21. PubMed ID: 21607890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI.
    Mijailovich SM; Stojanovic B; Kojic M; Liang A; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2010 Nov; 109(5):1500-14. PubMed ID: 20689096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating and simulating skeletal muscle from the visible human data set.
    Teran J; Sifakis E; Blemker SS; Ng-Thow-Hing V; Lau C; Fedkiw R
    IEEE Trans Vis Comput Graph; 2005; 11(3):317-28. PubMed ID: 15868831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards virtual surgery in oral cancer to predict postoperative oral functions preoperatively.
    van Alphen MJ; Kreeft AM; van der Heijden F; Smeele LE; Balm AJ
    Br J Oral Maxillofac Surg; 2013 Dec; 51(8):747-51. PubMed ID: 23958349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical model of the upper airways for simulating laryngoscopy.
    Rodrigues MA; Gillies D; Charters P
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):127-48. PubMed ID: 11264864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique. Application to the biomechanics of speech production.
    Gerard JM; Ohayon J; Luboz V; Perrier P; Payan Y
    Med Eng Phys; 2005 Dec; 27(10):884-92. PubMed ID: 16280251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation.
    Nazari MA; Perrier P; Chabanas M; Payan Y
    Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):469-82. PubMed ID: 20635263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional myoarchitecture of the bovine tongue demonstrated by diffusion spectrum magnetic resonance imaging with tractography.
    Gilbert RJ; Wedeen VJ; Magnusson LH; Benner T; Wang R; Dai G; Napadow VJ; Roche KK
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1173-82. PubMed ID: 17031810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization.
    Clemen CB; Benderoth GEK; Schmidt A; Hübner F; Vogl TJ; Silber G
    J Mech Behav Biomed Mater; 2017 Jan; 65():679-687. PubMed ID: 27743943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning.
    Buchaillard S; Perrier P; Payan Y
    J Acoust Soc Am; 2009 Oct; 126(4):2033-51. PubMed ID: 19813813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.