These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23319241)

  • 1. A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI.
    Scheinost D; Hampson M; Qiu M; Bhawnani J; Constable RT; Papademetris X
    Neuroinformatics; 2013 Jul; 11(3):291-300. PubMed ID: 23319241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.
    Misaki M; Barzigar N; Zotev V; Phillips R; Cheng S; Bodurka J
    J Neurosci Methods; 2015 Dec; 256():117-21. PubMed ID: 26343529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI.
    Kopel R; Sladky R; Laub P; Koush Y; Robineau F; Hutton C; Weiskopf N; Vuilleumier P; Van De Ville D; Scharnowski F
    Neuroimage; 2019 May; 191():421-429. PubMed ID: 30818024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLIMM: Slice localization integrated MRI monitoring.
    Sui Y; Afacan O; Gholipour A; Warfield SK
    Neuroimage; 2020 Dec; 223():117280. PubMed ID: 32853815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance assessment of an algorithm for the alignment of fMRI time series.
    Ciulla C; Deek FP
    Brain Topogr; 2002; 14(4):313-32. PubMed ID: 12137364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time EEG artifact correction during fMRI using ICA.
    Mayeli A; Zotev V; Refai H; Bodurka J
    J Neurosci Methods; 2016 Dec; 274():27-37. PubMed ID: 27697458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.
    Purdon PL; Millan H; Fuller PL; Bonmassar G
    J Neurosci Methods; 2008 Nov; 175(2):165-86. PubMed ID: 18761038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput optogenetic functional magnetic resonance imaging with parallel computations.
    Fang Z; Lee JH
    J Neurosci Methods; 2013 Sep; 218(2):184-95. PubMed ID: 23747482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI analysis on the GPU-possibilities and challenges.
    Eklund A; Andersson M; Knutsson H
    Comput Methods Programs Biomed; 2012 Feb; 105(2):145-61. PubMed ID: 21862169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data.
    Weiskopf N; Veit R; Erb M; Mathiak K; Grodd W; Goebel R; Birbaumer N
    Neuroimage; 2003 Jul; 19(3):577-86. PubMed ID: 12880789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU accelerated dynamic functional connectivity analysis for functional MRI data.
    Akgün D; Sakoğlu Ü; Esquivel J; Adinoff B; Mete M
    Comput Med Imaging Graph; 2015 Jul; 43():53-63. PubMed ID: 25805449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-history artifact during functional MRI: potential for adaptive correction.
    Yancey SE; Rotenberg DJ; Tam F; Chiew M; Ranieri S; Biswas L; Anderson KJ; Baker SN; Wright GA; Graham SJ
    Med Phys; 2011 Aug; 38(8):4634-46. PubMed ID: 21928636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A power calculation guide for fMRI studies.
    Mumford JA
    Soc Cogn Affect Neurosci; 2012 Aug; 7(6):738-42. PubMed ID: 22641837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of 3D rigid body motion in fMRI time series by independent estimation of rotational and translational effects in k-space.
    Costagli M; Waggoner RA; Ueno K; Tanaka K; Cheng K
    Neuroimage; 2009 Apr; 45(3):749-57. PubMed ID: 19280703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
    Joshi J; Saharan S; Mandal PK
    J Neurosci Methods; 2014 Feb; 223():123-32. PubMed ID: 24345673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.