BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 23319452)

  • 1. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors.
    Falco C; Sieben JM; Brun N; Sevilla M; van der Mauelen T; Morallón E; Cazorla-Amorós D; Titirici MM
    ChemSusChem; 2013 Feb; 6(2):374-82. PubMed ID: 23319452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.
    Rose M; Korenblit Y; Kockrick E; Borchardt L; Oschatz M; Kaskel S; Yushin G
    Small; 2011 Apr; 7(8):1108-17. PubMed ID: 21449047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons.
    Karthikeyan K; Amaresh S; Lee SN; Sun X; Aravindan V; Lee YG; Lee YS
    ChemSusChem; 2014 May; 7(5):1435-42. PubMed ID: 24648276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob.
    Tseng RL; Tseng SK
    J Colloid Interface Sci; 2005 Jul; 287(2):428-37. PubMed ID: 15925607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors.
    Nabais JM; Teixeira JG; Almeida I
    Bioresour Technol; 2011 Feb; 102(3):2781-7. PubMed ID: 21146406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.
    Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates.
    Ruiz-Rosas R; Valero-Romero MJ; Salinas-Torres D; Rodríguez-Mirasol J; Cordero T; Morallón E; Cazorla-Amorós D
    ChemSusChem; 2014 May; 7(5):1458-67. PubMed ID: 24678067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.
    Liu C; Wang J; Li J; Luo R; Shen J; Sun X; Han W; Wang L
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18609-17. PubMed ID: 26243663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors.
    Chung HY; Pan GT; Hong ZY; Hsu CT; Chong S; Yang TC; Huang CM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.
    Huang C; Sun T; Hulicova-Jurcakova D
    ChemSusChem; 2013 Dec; 6(12):2330-9. PubMed ID: 24039010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation.
    Li H; Shi F; An Q; Zhai S; Wang K; Tong Y
    Int J Biol Macromol; 2021 Jan; 166():923-933. PubMed ID: 33152364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors.
    Cagnon B; Py X; Guillot A; Stoeckli F; Chambat G
    Bioresour Technol; 2009 Jan; 100(1):292-8. PubMed ID: 18650083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes.
    Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ
    ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.
    Du X; Zhao W; Wang Y; Wang C; Chen M; Qi T; Hua C; Ma M
    Bioresour Technol; 2013 Dec; 149():31-7. PubMed ID: 24084201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method.
    Zhang W; Lin H; Lin Z; Yin J; Lu H; Liu D; Zhao M
    ChemSusChem; 2015 Jun; 8(12):2114-22. PubMed ID: 26033894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications.
    Rey-Raap N; Enterría M; Martins JI; Pereira MFR; Figueiredo JL
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6066-6077. PubMed ID: 30652469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.