These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 23319452)

  • 41. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.
    Qiao ZJ; Chen MM; Wang CY; Yuan YC
    Bioresour Technol; 2014 Jul; 163():386-9. PubMed ID: 24851713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides.
    Sevilla M; Fuertes AB
    Chemistry; 2009; 15(16):4195-203. PubMed ID: 19248078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Hollow Spherical Carbon Derived from the Spray Drying of Corncob Lignin for High-Rate-Performance Supercapacitors.
    Pan ZZ; Dong L; Lv W; Zheng D; Li Z; Luo C; Zheng C; Yang QH; Kang F
    Chem Asian J; 2017 Mar; 12(5):503-506. PubMed ID: 28098960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous carbohydrate-based materials via hard templating.
    Kubo S; Demir-Cakan R; Zhao L; White RJ; Titirici MM
    ChemSusChem; 2010 Feb; 3(2):188-94. PubMed ID: 19885902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors.
    Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J
    Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
    Dou X; Hasa I; Hekmatfar M; Diemant T; Behm RJ; Buchholz D; Passerini S
    ChemSusChem; 2017 Jun; 10(12):2668-2676. PubMed ID: 28425668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors.
    Ren Y; Xu Q; Zhang J; Yang H; Wang B; Yang D; Hu J; Liu Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9689-97. PubMed ID: 24882146
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.
    Elmouwahidi A; Zapata-Benabithe Z; Carrasco-Marín F; Moreno-Castilla C
    Bioresour Technol; 2012 May; 111():185-90. PubMed ID: 22370231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor.
    Kruk M; Dufour B; Celer EB; Kowalewski T; Jaroniec M; Matyjaszewski K
    J Phys Chem B; 2005 May; 109(19):9216-25. PubMed ID: 16852101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation.
    Yue XM; An ZY; Ye M; Liu ZJ; Xiao CC; Huang Y; Han YJ; Zhang SQ; Zhu JS
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590393
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of capacitor's electrode from sunflower seed shell.
    Li X; Xing W; Zhuo S; Zhou J; Li F; Qiao SZ; Lu GQ
    Bioresour Technol; 2011 Jan; 102(2):1118-23. PubMed ID: 20850968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.
    Wang H; Xu Z; Kohandehghan A; Li Z; Cui K; Tan X; Stephenson TJ; King'ondu CK; Holt CM; Olsen BC; Tak JK; Harfield D; Anyia AO; Mitlin D
    ACS Nano; 2013 Jun; 7(6):5131-41. PubMed ID: 23651213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.
    Du SH; Wang LQ; Fu XT; Chen MM; Wang CY
    Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials.
    Li K; Chen W; Yang H; Chen Y; Xia S; Xia M; Tu X; Chen H
    Bioresour Technol; 2019 May; 280():260-268. PubMed ID: 30776652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode.
    Chen L; Ji T; Brisbin L; Zhu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12230-7. PubMed ID: 25980528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active carbons prepared by chemical activation of plum stones and their application in removal of NO2.
    Nowicki P; Wachowska H; Pietrzak R
    J Hazard Mater; 2010 Sep; 181(1-3):1088-94. PubMed ID: 20576355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capacitance of KOH activated carbide-derived carbons.
    Portet C; Lillo-Ródenas MA; Linares-Solano A; Gogotsi Y
    Phys Chem Chem Phys; 2009 Jul; 11(25):4943-5. PubMed ID: 19562122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.