These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23319615)

  • 1. Properties of hydrophobic free energy found by gas-liquid transfer.
    Baldwin RL
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1670-3. PubMed ID: 23319615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-liquid transfer data used to analyze hydrophobic hydration and find the nature of the Kauzmann-Tanford hydrophobic factor.
    Baldwin RL
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7310-3. PubMed ID: 22529345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The new view of hydrophobic free energy.
    Baldwin RL
    FEBS Lett; 2013 Apr; 587(8):1062-6. PubMed ID: 23337880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the hydrophobic factor drives protein folding.
    Baldwin RL; Rose GD
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12462-12466. PubMed ID: 27791131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding.
    Baldwin RL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):13052-6. PubMed ID: 25157156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of alkanes with the aqueous liquid-vapor interface: a reference system for interpreting hydrophobicity generally through interfacial fluctuations.
    Ou SC; Cui D; Patel S
    Phys Chem Chem Phys; 2014 Dec; 16(48):26779-85. PubMed ID: 25372502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.
    Vysotsky YB; Kartashynska ES; Belyaeva EA; Fainerman VB; Vollhardt D; Miller R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28901-20. PubMed ID: 26455734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desolvation penalty for burying hydrogen-bonded peptide groups in protein folding.
    Baldwin RL
    J Phys Chem B; 2010 Dec; 114(49):16223-7. PubMed ID: 20961078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental swap energy and role of configurational entropy in transfer of small molecules from water into alkanes.
    Smejtek P; Word RC
    J Chem Phys; 2004 Jan; 120(3):1383-94. PubMed ID: 15268264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics.
    Cooper A
    Biophys Chem; 2000 May; 85(1):25-39. PubMed ID: 10885396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.
    Vysotsky YB; Fomina ES; Belyaeva EA; Fainerman VB; Vollhardt D
    Phys Chem Chem Phys; 2013 Feb; 15(6):2159-76. PubMed ID: 23292086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple model of hydrophobic hydration.
    Lukšič M; Urbic T; Hribar-Lee B; Dill KA
    J Phys Chem B; 2012 May; 116(21):6177-86. PubMed ID: 22564051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration and heat stability effects on protein unfolding.
    Oobatake M; Ooi T
    Prog Biophys Mol Biol; 1993; 59(3):237-84. PubMed ID: 8441810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy and enthalpy convergence of hydrophobic solvation beyond the hard-sphere limit.
    Sedlmeier F; Horinek D; Netz RR
    J Chem Phys; 2011 Feb; 134(5):055105. PubMed ID: 21303165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins.
    Harris RC; Pettitt BM
    J Phys Condens Matter; 2016 Mar; 28(8):083003. PubMed ID: 26836518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic analysis of alcohol effect on thermal stability of proteins.
    Miyawaki O; Tatsuno M
    J Biosci Bioeng; 2011 Feb; 111(2):198-203. PubMed ID: 20947421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.