These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23319708)

  • 1. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel.
    Daly T; Myers LE; Bahaj AS
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120246. PubMed ID: 23319708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.
    Karsten R; Swan A; Culina J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120189. PubMed ID: 23319706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.
    Divett T; Vennell R; Stevens C
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120251. PubMed ID: 23319710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors.
    Stallard T; Collings R; Feng T; Whelan J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120159. PubMed ID: 23319702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.
    Batten WM; Harrison ME; Bahaj AS
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120293. PubMed ID: 23319711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.
    Churchfield MJ; Li Y; Moriarty PJ
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120421. PubMed ID: 23319713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.
    Consul CA; Willden RH; McIntosh SC
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120299. PubMed ID: 23319712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of turbulence on the wake of a marine current turbine simulator.
    Blackmore T; Batten WM; Bahaj AS
    Proc Math Phys Eng Sci; 2014 Oct; 470(2170):20140331. PubMed ID: 25294966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimal tuning strategy for tidal turbines.
    Vennell R
    Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160047. PubMed ID: 27956870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key features of wave energy.
    Rainey RC
    Philos Trans A Math Phys Eng Sci; 2012 Jan; 370(1959):425-38. PubMed ID: 22184669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of 3D-hydraulics in habitat modelling of hydropeaking events.
    Pisaturo GR; Righetti M; Dumbser M; Noack M; Schneider M; Cavedon V
    Sci Total Environ; 2017 Jan; 575():219-230. PubMed ID: 27744151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tidal current power effects on nearby sandbanks: a case study in the Race of Alderney.
    Blunden LS; Haynes SG; Bahaj AS
    Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20190503. PubMed ID: 32713312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental analysis of the shear flow effect on tidal turbine blade root force from three-dimensional mean flow reconstruction.
    Gaurier B; Druault P; Ikhennicheu M; Germain G
    Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20200001. PubMed ID: 32713318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.
    Debnath M; Santoni C; Leonardi S; Iungo GV
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow through a very porous obstacle in a shallow channel.
    Creed MJ; Draper S; Nishino T; Borthwick AGL
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160672. PubMed ID: 28484321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental analysis of the hydrass flushing gate and field validation of flush propagation modelling.
    Bertrand-Krajewski JL; Campisano A; Creaco E; Modica C
    Water Sci Technol; 2005; 51(2):129-37. PubMed ID: 15790236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic jets as a flow control device for performance enhancement of vertical axis hydrokinetic turbines: A 3D computational study.
    Botero N; Ratkovich N; Lain S; Lopez Mejia OD
    Heliyon; 2022 Aug; 8(8):e10017. PubMed ID: 35928101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of blood rheological models for physiological flow simulation.
    Neofytou P
    Biorheology; 2004; 41(6):693-714. PubMed ID: 15851845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy potential of a tidal fence deployed near a coastal headland.
    Draper S; Borthwick AG; Houlsby GT
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120176. PubMed ID: 23319703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modelling of hydrodynamics and tidal energy extraction in the Alderney Race: a review.
    ThiƩbot J; Coles DS; Bennis AC; Guillou N; Neill S; Guillou S; Piggott M
    Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20190498. PubMed ID: 32713317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.