These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Vandenberg JI; Torres AM; Campbell TJ; Kuchel PW Eur Biophys J; 2004 Apr; 33(2):89-97. PubMed ID: 13680209 [TBL] [Abstract][Full Text] [Related]
6. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Durell SR; Shrivastava IH; Guy HR Biophys J; 2004 Oct; 87(4):2116-30. PubMed ID: 15454416 [TBL] [Abstract][Full Text] [Related]
7. KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments. Bruhova I; Zhorov BS Biophys J; 2005 Aug; 89(2):1020-9. PubMed ID: 15908577 [TBL] [Abstract][Full Text] [Related]
8. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Kim DM; Nimigean CM Cold Spring Harb Perspect Biol; 2016 May; 8(5):. PubMed ID: 27141052 [TBL] [Abstract][Full Text] [Related]
9. Architecture and gating of Hv1 proton channels. Tombola F; Ulbrich MH; Isacoff EY J Physiol; 2009 Nov; 587(Pt 22):5325-9. PubMed ID: 19915215 [TBL] [Abstract][Full Text] [Related]
10. Voltage sensing in ion channels: mesoscale simulations of biological devices. Peyser A; Nonner W Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011910. PubMed ID: 23005455 [TBL] [Abstract][Full Text] [Related]
11. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification. Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348 [TBL] [Abstract][Full Text] [Related]
12. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges. Claydon TW; Makary SY; Dibb KM; Boyett MR Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439 [TBL] [Abstract][Full Text] [Related]
13. Voltage-gated K channels. Armstrong CM Sci STKE; 2003 Jun; 2003(188):re10. PubMed ID: 12824476 [TBL] [Abstract][Full Text] [Related]
14. Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel. Thomson AS; Rothberg BS J Gen Physiol; 2010 Nov; 136(5):569-79. PubMed ID: 20937694 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of activation at the selectivity filter of the KcsA K Heer FT; Posson DJ; Wojtas-Niziurski W; Nimigean CM; Bernèche S Elife; 2017 Oct; 6():. PubMed ID: 28994652 [TBL] [Abstract][Full Text] [Related]
16. Interaction between tetraethylammonium and permeant cations at the inactivation gate of the HERG potassium channel. Shimizu H; Toyoshima C; Oiki S Jpn J Physiol; 2003 Feb; 53(1):25-34. PubMed ID: 12689355 [TBL] [Abstract][Full Text] [Related]
17. Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling. Ben-Abu Y; Zhou Y; Zilberberg N; Yifrach O Nat Struct Mol Biol; 2009 Jan; 16(1):71-9. PubMed ID: 19098918 [TBL] [Abstract][Full Text] [Related]
18. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels. Lee SY; Banerjee A; MacKinnon R PLoS Biol; 2009 Mar; 7(3):e47. PubMed ID: 19260762 [TBL] [Abstract][Full Text] [Related]
19. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. Kurata HT; Wang Z; Fedida D J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918 [TBL] [Abstract][Full Text] [Related]
20. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels. Eghbali M; Olcese R; Zarei MM; Toro L; Stefani E J Membr Biol; 2002 Jul; 188(1):73-86. PubMed ID: 12172648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]