These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23319830)

  • 1. Simulations of magnetic nanoparticle Brownian motion.
    Reeves DB; Weaver JB
    J Appl Phys; 2012 Dec; 112(12):124311. PubMed ID: 23319830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations.
    Reeves DB; Weaver JB
    J Appl Phys; 2015 Jun; 117(23):233905. PubMed ID: 26130846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.
    Cantillon-Murphy P; Wald LL; Adalsteinsson E; Zahn M
    J Magn Magn Mater; 2010 Sep; 322(17):2607-2617. PubMed ID: 20625540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.
    Reeves DB; Shi Y; Weaver JB
    PLoS One; 2016; 11(3):e0150856. PubMed ID: 26959493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field.
    Reeves DB; Weaver JB
    J Phys D Appl Phys; 2014; 47(4):045002. PubMed ID: 24610961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field.
    Shah SA; Reeves DB; Ferguson RM; Weaver JB; Krishnan KM
    Phys Rev B Condens Matter Mater Phys; 2015; 92(9):. PubMed ID: 26504371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent quantification of magnetic nanoparticles temperature and relaxation time.
    Shi Y; Weaver JB
    Med Phys; 2019 Sep; 46(9):4070-4076. PubMed ID: 31209904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical Expression for AC Magnetization Harmonics of Magnetic Nanoparticles under High-Frequency Excitation Field for Thermometry.
    Du Z; Wang D; Sun Y; Noguchi Y; Bai S; Yoshida T
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33327427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields.
    Usov NA; Rytov RA; Bautin VA
    Beilstein J Nanotechnol; 2019; 10():2294-2303. PubMed ID: 31807414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic phase angle as a concentration-independent measure of nanoparticle dynamics.
    Rauwerdink AM; Weaver JB
    Med Phys; 2010 Jun; 37(6):2587-92. PubMed ID: 20632570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches for modeling magnetic nanoparticle dynamics.
    Reeves DB; Weaver JB
    Crit Rev Biomed Eng; 2014; 42(1):85-93. PubMed ID: 25271360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles nonequilibrium deterministic equation of motion of a Brownian particle and microscopic viscous drag.
    Gujrati PD
    Phys Rev E; 2020 Jul; 102(1-1):012140. PubMed ID: 32795007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.