These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23320142)

  • 1. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.
    Lee JH; Holland TB; Mukherjee AK; Zhang X; Wang H
    Sci Rep; 2013; 3():1061. PubMed ID: 23320142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic Deformation through Dislocation Saturation in Ultrasmall Pt Nanocrystals and Its in Situ Atomistic Mechanisms.
    Wang L; Teng J; Sha X; Zou J; Zhang Z; Han X
    Nano Lett; 2017 Aug; 17(8):4733-4739. PubMed ID: 28715223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong strain hardening in nanocrystalline nickel.
    Wu XL; Zhu YT; Wei YG; Wei Q
    Phys Rev Lett; 2009 Nov; 103(20):205504. PubMed ID: 20365992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
    Fan L; Yang T; Zhao Y; Luan J; Zhou G; Wang H; Jiao Z; Liu CT
    Nat Commun; 2020 Dec; 11(1):6240. PubMed ID: 33288762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
    Bufford D; Liu Y; Wang J; Wang H; Zhang X
    Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Strain-Rate Deformation Behavior of Co
    Jiang K; Xiong Z; Chen X
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure, Plastic Deformation, and Influence of Strain Rate Concerning Ni/Al
    Fu X
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy.
    Petrov YN; Prokopenko GI; Mordyuk BN; Vasylyev MA; Voloshko SM; Skorodzievski VS; Filatova VS
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1024-35. PubMed ID: 26478400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites.
    Li Z; Zhang Y; Zhang Z; Cui YT; Guo Q; Liu P; Jin S; Sha G; Ding K; Li Z; Fan T; Urbassek HM; Yu Q; Zhu T; Zhang D; Wang YM
    Nat Commun; 2022 Sep; 13(1):5581. PubMed ID: 36151199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong and ductile medium-entropy alloys via hierarchical ordering.
    Gu L; Zhao Y; Li Y; Hou R; Liang F; Zhang R; Wu Y; Fan Y; Liang N; Zhou B; Chen Y; Sha G; Chen G; Wang Y; Chen X
    Sci Adv; 2024 May; 10(22):eadn7553. PubMed ID: 38809970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study.
    Haque MA; Saif MT
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6335-40. PubMed ID: 15084745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
    Kobler A; Brandl C; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2016; 7():572-80. PubMed ID: 27335747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy.
    Chen S; Oh HS; Gludovatz B; Kim SJ; Park ES; Zhang Z; Ritchie RO; Yu Q
    Nat Commun; 2020 Feb; 11(1):826. PubMed ID: 32047160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic Insight into Grain Boundary Deformation Induced Strengthening in Layer-Grained Nanocrystalline Al.
    Jing P; Wang Y; Zhou Y; Shi W
    Langmuir; 2023 Jul; 39(28):9963-9971. PubMed ID: 37390453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary strain hardening by gradient structure.
    Wu X; Jiang P; Chen L; Yuan F; Zhu YT
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7197-201. PubMed ID: 24799688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving large uniform tensile ductility in nanocrystalline metals.
    Wang YM; Ott RT; Hamza AV; Besser MF; Almer J; Kramer MJ
    Phys Rev Lett; 2010 Nov; 105(21):215502. PubMed ID: 21231320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.