BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23320307)

  • 1. Estimates of microscopic ionization constants for heteroaromatic exocyclic amines including purine and pyrimidine nucleotides and amides based upon a reactivity-basicity correlation for N-hydroxymethylation reactions with formaldehyde¹(a),².
    Abrams WR; Kallen RG
    J Am Chem Soc; 1976 Nov; 98(24):7789-92. PubMed ID: 23320307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibria and kinetics of N-hydroxymethylamine formation from aromatic exocyclic amines and formaldehyde. Effects of nucleophilicity and catalyst strength upon mechanisms of catalysis of carbinolamine formation¹.
    Abrams WR; Kallen RG
    J Am Chem Soc; 1976 Nov; 98(24):7777-89. PubMed ID: 23320306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases.
    McGhee JD; von Hippel PH
    Biochemistry; 1975 Mar; 14(6):1281-96. PubMed ID: 235285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases.
    McGhee JD; von Hippel PH
    Biochemistry; 1975 Mar; 14(6):1297-303. PubMed ID: 235286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.
    Shamovsky I; Ripa L; Blomberg N; Eriksson LA; Hansen P; Mee C; Tyrchan C; O'Donovan M; Sjö P
    Chem Res Toxicol; 2012 Oct; 25(10):2236-52. PubMed ID: 22946514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buffer catalysis of amino proton exchange in compounds of adenosine, cytidine and their endocyclic N-methylated derivatives.
    McConnell B; Politowski D
    Biophys Chem; 1984 Aug; 20(1-2):135-48. PubMed ID: 6487743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic investigation of the reactions of S-4-nitrophenyl 4-substituted thiobenzoates with secondary alicyclic amines in aqueous ethanol.
    Castro EA; Bessolo J; Aguayo R; Santos JG
    J Org Chem; 2003 Oct; 68(21):8157-61. PubMed ID: 14535798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminolysis of 4-nitrophenyl phenyl carbonate and thionocarbonate: effects of amine nature and modification of electrophilic center from C[double bond]O to C[double bond]S on reactivity and mechanism.
    Um IH; Yoon S; Park HR; Han HJ
    Org Biomol Chem; 2008 May; 6(9):1618-24. PubMed ID: 18421395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of changing electrophilic center from C=O to C=S on rates and mechanism: pyridinolyses of O-2,4-dinitrophenyl thionobenzoate and its oxygen analogue.
    Um IH; Han HJ; Baek MH; Bae SY
    J Org Chem; 2004 Sep; 69(19):6365-70. PubMed ID: 15357596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA).
    Gómez-Coca RB; Blindauer CA; Sigel A; Operschall BP; Holý A; Sigel H
    Chem Biodivers; 2012 Sep; 9(9):2008-34. PubMed ID: 22976988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and Mechanism of Aminolysis of Phenyl Acetates in Aqueous Solutions of Poly(ethylenimine).
    Arcelli A; Concilio C
    J Org Chem; 1996 Mar; 61(5):1682-1688. PubMed ID: 11667037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of the pyridinolysis of S-2,4-dinitrophenyl 4-substituted thiobenzoates.
    Castro EA; Aguayo R; Bessolo J; Santos JG
    J Org Chem; 2005 Apr; 70(9):3530-6. PubMed ID: 15844987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of acid decomposition of dithiocarbamates. 3. Aryldithiocarbamates and the torsional effect.
    Humeres E; Debacher NA; Franco JD; Lee BS; Martendal A
    J Org Chem; 2002 May; 67(11):3662-7. PubMed ID: 12027677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetics and mechanism of the 3H to 1H in C(8)H groups of purine derivatives].
    Maslova RN; Lesnik EA; Varshavskiĭ IaM
    Mol Biol (Mosk); 1975; 9(2):310-20. PubMed ID: 3730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of amine nature and nonleaving group substituents on rate and mechanism in aminolyses of 2,4-dinitrophenyl X-substituted benzoates.
    Um IH; Kim KH; Park HR; Fujio M; Tsuno Y
    J Org Chem; 2004 May; 69(11):3937-42. PubMed ID: 15153028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism of the aminolysis of 4-methylphenyl and 4-chlorophenyl 4-nitrophenyl carbonates in aqueous ethanol.
    Castro EA; Andújar M; Toro A; Santos JG
    J Org Chem; 2003 May; 68(9):3608-13. PubMed ID: 12713368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Amino acids as catalysts of the binding reaction of formaldehyde with adenine residue in polyadenylic acid].
    Volkov VS; Ivanova GA; Poverennyĭ AM; Sverdlov ED
    Bioorg Khim; 1987 Jun; 13(6):805-9. PubMed ID: 3675635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation of kanamycin A: detailing of thermodynamics and protonation sites assignment.
    Fuentes-Martínez Y; Godoy-Alcántar C; Medrano F; Dikiy A; Yatsimirsky AK
    Bioorg Chem; 2010 Aug; 38(4):173-80. PubMed ID: 20457465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice of solvent (MeCN vs H(2)O) decides rate-limiting step in S(N)Ar aminolysis of 1-fluoro-2,4-dinitrobenzene with secondary amines: importance of Brønsted-type analysis in acetonitrile.
    Um IH; Min SW; Dust JM
    J Org Chem; 2007 Nov; 72(23):8797-803. PubMed ID: 17949108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and Mechanism of the Pyridinolysis of 2,4-Dinitrophenyl and 2,4,6-Trinitrophenyl O-Ethyl Dithiocarbonates.
    Castro EA; Araneda CA; Santos JG
    J Org Chem; 1997 Jan; 62(1):126-129. PubMed ID: 11671373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.