BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 2332047)

  • 1. The interaction of amiloride with acetylcholinesterase and butyrylcholinesterase.
    Zemach L; Segal D; Shalitin Y
    FEBS Lett; 1990 Apr; 263(1):166-8. PubMed ID: 2332047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-course of human cholinesterases-catalyzed competing substrate kinetics.
    Mukhametgalieva AR; Aglyamova AR; Lushchekina SV; Goličnik M; Masson P
    Chem Biol Interact; 2019 Sep; 310():108702. PubMed ID: 31247192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.
    Krátký M; Štěpánková Š; Vorčáková K; Vinšová J
    Bioorg Chem; 2016 Oct; 68():23-9. PubMed ID: 27428597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Inverse' substrates for butyrylcholinesterase.
    Nozawa M; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Feb; 611(2):314-22. PubMed ID: 7357012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors.
    Nisa MU; Munawar MA; Iqbal A; Ahmed A; Ashraf M; Gardener QA; Khan MA
    Eur J Med Chem; 2017 Sep; 138():396-406. PubMed ID: 28688279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic acyl guanidines bearing carbamate moieties allow potent and dirigible cholinesterase inhibition of either acetyl- or butyrylcholinesterase.
    Darras FH; Kling B; Sawatzky E; Heilmann J; Decker M
    Bioorg Med Chem; 2014 Sep; 22(17):5020-34. PubMed ID: 25059502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid.
    Atack JR; Perry EK; Bonham JR; Perry RH
    J Neurochem; 1987 Jun; 48(6):1845-50. PubMed ID: 3572402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Substrate and inhibitor specificity of brain cholinesterase of various fly species (Diptera: Anthomyiidae, Muscidae). Enzyme type].
    Grigor'eva GM; Krasnova TI; Khovanskikh AE; Lezhneva IP
    Zh Evol Biokhim Fiziol; 1997; 33(4-5):431-42. PubMed ID: 9542042
    [No Abstract]   [Full Text] [Related]  

  • 10. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes.
    Pezzementi L; Nachon F; Chatonnet A
    PLoS One; 2011 Feb; 6(2):e17396. PubMed ID: 21364766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon.
    Amitai G; Moorad D; Adani R; Doctor BP
    Biochem Pharmacol; 1998 Aug; 56(3):293-9. PubMed ID: 9744565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate dependence of amiloride- and soman-induced conformation changes of butyrylcholinesterase as evidenced by high-pressure perturbation.
    Cléry C; Heiber-Langer I; Channac L; David L; Balny C; Masson P
    Biochim Biophys Acta; 1995 Jul; 1250(1):19-28. PubMed ID: 7612649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Acetylcholinesterase and Butyrylcholinesterase by a Plant Secondary Metabolite Boldine.
    Kostelnik A; Pohanka M
    Biomed Res Int; 2018; 2018():9634349. PubMed ID: 29850593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Reactivation of phosphorylated cholinesterase immobilized in a gelatin membrane].
    Kugusheva LI; Nikol'skaia EB
    Ukr Biokhim Zh (1978); 1990; 62(2):93-6. PubMed ID: 2368191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.
    Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA
    Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase.
    Krátký M; Štěpánková Š; Vorčáková K; Vinšová J
    Bioorg Chem; 2018 Oct; 80():668-673. PubMed ID: 30059892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A suitable method to monitor inhibition of cholinesterase activities in tissues as induced by reversible enzyme inhibitors.
    Thomsen T; Kewitz H; Pleul O
    Enzyme; 1989; 42(4):219-24. PubMed ID: 2698348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraalkylammonium derivatives of 6-methyluracil, a new class of cholinesterase inhibitors: characteristics of interaction with cholinesterases from different groups of animals.
    Anikienko KA; Bychikhin EA; Kurochkin VK; Reznik VS; Akamsin VD; Galyametdinova IV
    Dokl Biochem Biophys; 2001; 376():39-43. PubMed ID: 11712130
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.