These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23320486)

  • 1. An access to aza-Freidinger lactams and E-locked analogs.
    Ottersbach PA; Schmitz J; Schnakenburg G; Gütschow M
    Org Lett; 2013 Feb; 15(3):448-51. PubMed ID: 23320486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-aminoimidazolidin-2-one peptidomimetics.
    Doan ND; Hopewell R; Lubell WD
    Org Lett; 2014 Apr; 16(8):2232-5. PubMed ID: 24697286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel route to synthesize Freidinger lactams by micowave irradiation.
    Lama T; Campiglia P; Carotenuto A; Auriemma L; Gomez-Monterrey I; Novellino E; Grieco P
    J Pept Res; 2005 Nov; 66(5):231-5. PubMed ID: 16218990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Aminosulfamide peptide mimic synthesis by alkylation of aza-sulfurylglycinyl peptides.
    Turcotte S; Bouayad-Gervais SH; Lubell WD
    Org Lett; 2012 Mar; 14(5):1318-21. PubMed ID: 22329516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-catalyzed N-arylation of semicarbazones for the synthesis of aza-arylglycine-containing aza-peptides.
    Proulx C; Lubell WD
    Org Lett; 2010 Jul; 12(13):2916-9. PubMed ID: 20536163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugate addition to 1-phosphono-2-aza-1,3-butadienes: synthesis of phosphonylated gamma-lactams.
    Vanderhoydonck B; Stevens CV
    J Org Chem; 2005 Jan; 70(1):191-8. PubMed ID: 15624922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and analysis of the conformational preferences of 5-aminomethyloxazolidine-2,4-dione scaffolds: first examples of β(2)- and β(2, 2)-homo-Freidinger lactam analogues.
    Greco A; Tani S; De Marco R; Gentilucci L
    Chemistry; 2014 Oct; 20(41):13390-404. PubMed ID: 25182659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of Freidinger lactams and their analogs in the design of conformationally constrained peptidomimetics.
    Perdih A; Kikelj D
    Curr Med Chem; 2006; 13(13):1525-56. PubMed ID: 16787202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent diversity-oriented synthesis of aza-lysine-peptide mimics.
    Zhang J; Proulx C; Tomberg A; Lubell WD
    Org Lett; 2014 Jan; 16(1):298-301. PubMed ID: 24328523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New and expeditious tandem sequence aza-Michael/intramolecular nucleophilic substitution route to substituted gamma-lactams: synthesis of the tricyclic core of (+/-)-martinellines.
    Comesse S; Sanselme M; Daïch A
    J Org Chem; 2008 Jul; 73(14):5566-9. PubMed ID: 18549283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxyazapeptides: synthesis, structure determination, and conformational analysis.
    Biswas S; Abo-Dya NE; Oliferenko A; Khiabani A; Steel PJ; Alamry KA; Katritzky AR
    J Org Chem; 2013 Sep; 78(17):8502-9. PubMed ID: 23883323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-aza(1)-dipeptides in peptide synthesis.
    Melendez RE; Lubell WD
    J Am Chem Soc; 2004 Jun; 126(21):6759-64. PubMed ID: 15161304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient oxidative radical spirolactamization.
    Ibarra-Rivera TR; Gámez-Montaño R; Miranda LD
    Chem Commun (Camb); 2007 Sep; (33):3485-7. PubMed ID: 17700890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and properties of the first all-aza analogue of a biologically active peptide.
    Gante J; Krug M; Lauterbach G; Weitzel R; Hiller W
    J Pept Sci; 1995; 1(3):201-6. PubMed ID: 9222997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzotriazole-mediated synthesis of aza-peptides: en route to an aza-leuenkephalin analogue.
    Abo-Dya NE; Biswas S; Basak A; Avan I; Alamry KA; Katritzky AR
    J Org Chem; 2013 Apr; 78(8):3541-52. PubMed ID: 23373789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of diazabicyclo[4.3.0]nonene-based peptidomimetics.
    Hutton CA; Bartlett PA
    J Org Chem; 2007 Aug; 72(18):6865-72. PubMed ID: 17685573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new general approach for the stereocontrolled synthesis of functionalised γ- and δ-lactams.
    Daly M; Gill K; Sime M; Simpson GL; Sutherland A
    Org Biomol Chem; 2011 Oct; 9(19):6761-70. PubMed ID: 21837339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expedient and modular access to 2-azabicyclic architectures by iron-catalyzed dehydrative coupling of alcohol-bearing allylic lactams.
    Hovenkotter K; Braunstein H; Langevin S; Beng TK
    Org Biomol Chem; 2017 Feb; 15(5):1217-1221. PubMed ID: 28090613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective Aza-Sakurai Cyclizations: Dual Role of Thiourea as H-Bond Donor and Lewis Base.
    Park Y; Schindler CS; Jacobsen EN
    J Am Chem Soc; 2016 Nov; 138(45):14848-14851. PubMed ID: 27787993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselective synthesis of (-)-cephalotaxine and C-7 alkylated analogues.
    Planas L; Pérard-Viret J; Royer J
    J Org Chem; 2004 Apr; 69(9):3087-92. PubMed ID: 15104447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.