These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 23320542)
21. Role of the σ Siegel AR; Wemmer DE J Mol Biol; 2016 Nov; 428(23):4669-4685. PubMed ID: 27732872 [TBL] [Abstract][Full Text] [Related]
22. TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Yang Y; Darbari VC; Zhang N; Lu D; Glyde R; Wang YP; Winkelman JT; Gourse RL; Murakami KS; Buck M; Zhang X Science; 2015 Aug; 349(6250):882-5. PubMed ID: 26293966 [TBL] [Abstract][Full Text] [Related]
23. Activation and repression of a sigmaN-dependent promoter naturally lacking upstream activation sequences. Porrúa O; García-González V; Santero E; Shingler V; Govantes F Mol Microbiol; 2009 Aug; 73(3):419-33. PubMed ID: 19570137 [TBL] [Abstract][Full Text] [Related]
24. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Xiao Y; Wigneshweraraj SR; Weinzierl R; Wang YP; Buck M Nucleic Acids Res; 2009 Jul; 37(13):4482-97. PubMed ID: 19474350 [TBL] [Abstract][Full Text] [Related]
25. Regulatory sequences in sigma 54 localise near the start of DNA melting. Wigneshweraraj SR; Chaney MK; Ishihama A; Buck M J Mol Biol; 2001 Mar; 306(4):681-701. PubMed ID: 11243780 [TBL] [Abstract][Full Text] [Related]
26. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA. Vitale E; Milani A; Renzi F; Galli E; Rescalli E; de Lorenzo V; Bertoni G Mol Microbiol; 2008 Aug; 69(3):698-713. PubMed ID: 19138193 [TBL] [Abstract][Full Text] [Related]
27. Physical and functional analysis of the prokaryotic enhancer of the sigma 54-promoters of the TOL plasmid of Pseudomonas putida. Pérez-Martín J; de Lorenzo V J Mol Biol; 1996 May; 258(4):562-74. PubMed ID: 8636992 [TBL] [Abstract][Full Text] [Related]
29. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H; Kelly MT; Nixon BT; Hoover TR Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403 [TBL] [Abstract][Full Text] [Related]
30. Scanning force microscopy of Escherichia coli RNA polymerase.sigma54 holoenzyme complexes with DNA in buffer and in air. Schulz A; Mücke N; Langowski J; Rippe K J Mol Biol; 1998 Nov; 283(4):821-36. PubMed ID: 9790843 [TBL] [Abstract][Full Text] [Related]
31. PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. Herrera MC; Krell T; Zhang X; Ramos JL J Mol Biol; 2009 Dec; 394(3):576-86. PubMed ID: 19781550 [TBL] [Abstract][Full Text] [Related]
32. Conformational changes of Escherichia coli sigma54-RNA-polymerase upon closed-promoter complex formation. Ray P; Hall RJ; Finn RD; Chen S; Patwardhan A; Buck M; van Heel M J Mol Biol; 2005 Nov; 354(2):201-5. PubMed ID: 16246367 [TBL] [Abstract][Full Text] [Related]
33. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Sharma A; Leach RN; Gell C; Zhang N; Burrows PC; Shepherd DA; Wigneshweraraj S; Smith DA; Zhang X; Buck M; Stockley PG; Tuma R Nucleic Acids Res; 2014 Apr; 42(8):5177-90. PubMed ID: 24553251 [TBL] [Abstract][Full Text] [Related]
34. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida. Habe H; Kouzuma A; Endoh T; Omori T; Yamane H; Nojiri H Microbiology (Reading); 2007 Sep; 153(Pt 9):3091-3098. PubMed ID: 17768252 [TBL] [Abstract][Full Text] [Related]
35. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. Schumacher J; Joly N; Rappas M; Bradley D; Wigneshweraraj SR; Zhang X; Buck M J Biol Chem; 2007 Mar; 282(13):9825-9833. PubMed ID: 17242399 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription. Buck M; Engl C; Joly N; Jovanovic G; Jovanovic M; Lawton E; McDonald C; Schumacher J; Waite C; Zhang N Methods Mol Biol; 2015; 1276():53-79. PubMed ID: 25665558 [TBL] [Abstract][Full Text] [Related]
37. Pro54DB: a database for experimentally verified sigma-54 promoters. Liang ZY; Lai HY; Yang H; Zhang CJ; Yang H; Wei HH; Chen XX; Zhao YW; Su ZD; Li WC; Deng EZ; Tang H; Chen W; Lin H Bioinformatics; 2017 Feb; 33(3):467-469. PubMed ID: 28171531 [TBL] [Abstract][Full Text] [Related]
38. Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens. Zhang N; Jovanovic G; McDonald C; Ces O; Zhang X; Buck M Adv Exp Med Biol; 2016; 915():207-30. PubMed ID: 27193545 [TBL] [Abstract][Full Text] [Related]
39. Evidence for self-association of the alternative sigma factor σ54. Sabbatini M; Vezzoli A; Milani M; Bertoni G FEBS J; 2013 Mar; 280(5):1371-8. PubMed ID: 23320542 [TBL] [Abstract][Full Text] [Related]
40. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Johansson LU; Solera D; Bernardo LM; Moscoso JA; Shingler V Mol Microbiol; 2008 Nov; 70(3):709-23. PubMed ID: 18786144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]