These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23320545)

  • 1. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.
    Houari A; Seyer D; Kecili K; Heim V; Martino PD
    Biofouling; 2013; 29(2):109-18. PubMed ID: 23320545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the biofouling and cleaning efficiency of nanofiltration membranes.
    Houari A; Seyer D; Couquard F; Kecili K; Democrate C; Heim V; Di Martino P
    Biofouling; 2010 Jan; 26(1):15-21. PubMed ID: 20390552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of nanofiltration membrane foulants.
    Her N; Amy G; Plottu-Pecheux A; Yoon Y
    Water Res; 2007 Sep; 41(17):3936-47. PubMed ID: 17572472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment.
    Ivnitsky H; Katz I; Minz D; Volvovic G; Shimoni E; Kesselman E; Semiat R; Dosoretz CG
    Water Res; 2007 Sep; 41(17):3924-35. PubMed ID: 17585989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of biofilm formation on membrane performance in submerged membrane bioreactors.
    Mafirad S; Mehrnia MR; Azami H; Sarrafzadeh MH
    Biofouling; 2011 May; 27(5):477-85. PubMed ID: 21604217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing chemical cleaning of nanofiltration membranes in a drinking water production plant: a combination of chemical composition analysis and fluorescence microscopy.
    Di Martino P; Doumeche B; Galas L; Vaudry H; Heim V; Habarou H
    Water Sci Technol; 2007; 55(8-9):219-25. PubMed ID: 17546990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D.
    Sweity A; Ying W; Ali-Shtayeh MS; Yang F; Bick A; Oron G; Herzberg M
    Water Res; 2011 Dec; 45(19):6430-40. PubMed ID: 22014563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit.
    Houari A; Picard J; Habarou H; Galas L; Vaudry H; Heim V; Di Martino P
    Biofouling; 2008; 24(4):235-40. PubMed ID: 18392991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane.
    Kappachery S; Paul D; Yoon J; Kweon JH
    Biofouling; 2010 Aug; 26(6):667-72. PubMed ID: 20661790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.
    Derlon N; Koch N; Eugster B; Posch T; Pernthaler J; Pronk W; Morgenroth E
    Water Res; 2013 Apr; 47(6):2085-95. PubMed ID: 23419210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleaning of biologically fouled membranes with self-collapsing microbubbles.
    Agarwal A; Ng WJ; Liu Y
    Biofouling; 2013; 29(1):69-76. PubMed ID: 23194437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater.
    Gwon EM; Yu MJ; Oh HK; Ylee YH
    Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.
    Zhang Y; Yu X; Gong S; Ye C; Fan Z; Lin H
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1309-20. PubMed ID: 23715854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant.
    Tran T; Bolto B; Gray S; Hoang M; Ostarcevic E
    Water Res; 2007 Sep; 41(17):3915-23. PubMed ID: 17617435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.