These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 23320642)
41. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Wang L; Jia E Drug Deliv; 2016 Jun; 23(5):1810-7. PubMed ID: 26530693 [TBL] [Abstract][Full Text] [Related]
42. Integration of phospholipid-hyaluronic acid-methotrexate nanocarrier assembly and amphiphilic drug-drug conjugate for synergistic targeted delivery and combinational tumor therapy. Li Y; Zhang H; Chen Y; Ma J; Lin J; Zhang Y; Fan Z; Su G; Xie L; Zhu X; Hou Z Biomater Sci; 2018 Jun; 6(7):1818-1833. PubMed ID: 29785434 [TBL] [Abstract][Full Text] [Related]
43. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Xin H; Chen L; Gu J; Ren X; Wei Z; Luo J; Chen Y; Jiang X; Sha X; Fang X Int J Pharm; 2010 Dec; 402(1-2):238-47. PubMed ID: 20934500 [TBL] [Abstract][Full Text] [Related]
44. Conjugation of paclitaxel to C-6 hexanediamine-modified hyaluronic acid for targeted drug delivery to enhance antitumor efficacy. Chen Y; Peng F; Song X; Wu J; Yao W; Gao X Carbohydr Polym; 2018 Feb; 181():150-158. PubMed ID: 29253957 [TBL] [Abstract][Full Text] [Related]
45. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Gu G; Hu Q; Feng X; Gao X; Menglin J; Kang T; Jiang D; Song Q; Chen H; Chen J Biomaterials; 2014 Sep; 35(28):8215-26. PubMed ID: 24974009 [TBL] [Abstract][Full Text] [Related]
46. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Smejkalová D; Nešporová K; Hermannová M; Huerta-Angeles G; Cožíková D; Vištejnová L; Safránková B; Novotný J; Kučerík J; Velebný V Int J Pharm; 2014 May; 466(1-2):147-55. PubMed ID: 24614580 [TBL] [Abstract][Full Text] [Related]
47. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer. Min SY; Byeon HJ; Lee C; Seo J; Lee ES; Shin BS; Choi HG; Lee KC; Youn YS Int J Pharm; 2015 Oct; 494(1):506-15. PubMed ID: 26315118 [TBL] [Abstract][Full Text] [Related]
48. A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Shan L; Cui S; Du C; Wan S; Qian Z; Achilefu S; Gu Y Biomaterials; 2012 Jan; 33(1):146-62. PubMed ID: 21959006 [TBL] [Abstract][Full Text] [Related]
49. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Yadav AK; Agarwal A; Rai G; Mishra P; Jain S; Mishra AK; Agrawal H; Agrawal GP Drug Deliv; 2010 Nov; 17(8):561-72. PubMed ID: 20738221 [TBL] [Abstract][Full Text] [Related]
50. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Patil Y; Sadhukha T; Ma L; Panyam J J Control Release; 2009 May; 136(1):21-9. PubMed ID: 19331851 [TBL] [Abstract][Full Text] [Related]
51. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Yu D; Li W; Zhang Y; Zhang B Biomed Pharmacother; 2016 Oct; 83():1428-1435. PubMed ID: 27592131 [TBL] [Abstract][Full Text] [Related]
52. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Li J; He Y; Sun W; Luo Y; Cai H; Pan Y; Shen M; Xia J; Shi X Biomaterials; 2014 Apr; 35(11):3666-77. PubMed ID: 24462358 [TBL] [Abstract][Full Text] [Related]
53. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. Cho HS; Dong Z; Pauletti GM; Zhang J; Xu H; Gu H; Wang L; Ewing RC; Huth C; Wang F; Shi D ACS Nano; 2010 Sep; 4(9):5398-404. PubMed ID: 20707381 [TBL] [Abstract][Full Text] [Related]
54. Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. Chen C; Hu H; Qiao M; Zhao X; Wang Y; Chen K; Chen D J Drug Target; 2015 May; 23(4):311-22. PubMed ID: 25539074 [TBL] [Abstract][Full Text] [Related]
55. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy. Li R; Liu T; Wang K Biomed Tech (Berl); 2017 Feb; 62(1):67-73. PubMed ID: 27107831 [TBL] [Abstract][Full Text] [Related]
56. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505 [TBL] [Abstract][Full Text] [Related]
57. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Bae KH; Lee JY; Lee SH; Park TG; Nam YS Adv Healthc Mater; 2013 Apr; 2(4):576-84. PubMed ID: 23184673 [TBL] [Abstract][Full Text] [Related]
58. Preparation of the albumin nanoparticle system loaded with both paclitaxel and sorafenib and its evaluation in vitro and in vivo. Zhang JY; He B; Qu W; Cui Z; Wang YB; Zhang H; Wang JC; Zhang Q J Microencapsul; 2011; 28(6):528-36. PubMed ID: 21702701 [TBL] [Abstract][Full Text] [Related]
59. Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Zhao Z; He M; Yin L; Bao J; Shi L; Wang B; Tang C; Yin C Biomacromolecules; 2009 Mar; 10(3):565-72. PubMed ID: 19175304 [TBL] [Abstract][Full Text] [Related]
60. Successfully tailoring the pore size of mesoporous silica nanoparticles: exploitation of delivery systems for poorly water-soluble drugs. Jia L; Shen J; Li Z; Zhang D; Zhang Q; Duan C; Liu G; Zheng D; Liu Y; Tian X Int J Pharm; 2012 Dec; 439(1-2):81-91. PubMed ID: 23078857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]