These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23320700)

  • 1. Effects of hydrodynamic interaction on the equivalent conductivity minimum of electrolyte solutions in solvents of low dielectric constant.
    Yamaguchi T; Shimoda Y; Koda S
    J Chem Phys; 2013 Jan; 138(2):024503. PubMed ID: 23320700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2009 Mar; 130(9):094506. PubMed ID: 19275408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mechanism of equivalent conductivity minimum of electrolyte solution.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2011 Oct; 135(16):164511. PubMed ID: 22047256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.
    Yamaguchi T; Koda S
    J Chem Phys; 2014 Dec; 141(24):244501. PubMed ID: 25554161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian dynamics simulation of a model simple electrolyte in solvents of low dielectric constant.
    Yamaguchi T; Akatsuka T; Koda S
    J Chem Phys; 2011 Jun; 134(24):244506. PubMed ID: 21721642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2007 Dec; 127(23):234501. PubMed ID: 18154394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical investigations of solvation dynamics of ionic fluids: appropriateness of dielectric theory and the role of DC conductivity.
    Halder M; Headley LS; Mukherjee P; Song X; Petrich JW
    J Phys Chem A; 2006 Jul; 110(28):8623-6. PubMed ID: 16836422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductivity and electrophoretic mobility of dilute ionic solutions.
    Allison S; Wu H; Twahir U; Pei H
    J Colloid Interface Sci; 2010 Dec; 352(1):1-10. PubMed ID: 20810126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.
    Aburto CC; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions.
    Valiskó M; Boda D
    J Chem Phys; 2014 Jun; 140(23):234508. PubMed ID: 24952553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic mobilities of large organic ions in nonaqueous solvents: determination by capillary electrophoresis in propylene carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, acetonitrile and methanol.
    Muzikar J; van De Goor T; Gas B; Kenndler E
    Electrophoresis; 2002 Feb; 23(3):375-82. PubMed ID: 11870736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model.
    Horiuchi T; Takahashi M; Kikuchi J; Yokoyama S; Maeda H
    J Magn Reson; 2005 May; 174(1):34-42. PubMed ID: 15809170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride.
    Yamaguchi T; Koda S
    J Chem Phys; 2010 Mar; 132(11):114502. PubMed ID: 20331300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration dependence of ionic transport in dilute organic electrolyte solutions.
    Petrowsky M; Frech R
    J Phys Chem B; 2008 Jul; 112(28):8285-90. PubMed ID: 18570459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion mobilities and microscopic dynamics in liquid (Li,K)Cl.
    Morgan B; Madden PA
    J Chem Phys; 2004 Jan; 120(3):1402-13. PubMed ID: 15268266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-domain investigation of the ionic mobility of triflate salts in tetrahydrofuran.
    Yamaguchi T; Yamada Y; Matsuoka T; Koda S; Yasaka Y; Matubayasi N
    J Phys Chem B; 2011 Nov; 115(43):12558-65. PubMed ID: 21958388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics.
    Jiang W; Huang J; Wang Y; Laradji M
    J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.