BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 23320792)

  • 21. Synthesis of tertiary propargylamines via a rationally designed multicomponent reaction of primary amines, formaldehyde, arylboronic acids and alkynes.
    Wang J; Shen Q; Li P; Peng Y; Song G
    Org Biomol Chem; 2014 Aug; 12(30):5597-600. PubMed ID: 24969221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism.
    Volla CM; Vogel P
    Org Lett; 2009 Apr; 11(8):1701-4. PubMed ID: 19296636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chiral N-phosphonyl imine chemistry: an efficient asymmetric synthesis of chiral N-phosphonyl propargylamines.
    Kaur P; Shakya G; Sun H; Pan Y; Li G
    Org Biomol Chem; 2010 Mar; 8(5):1091-6. PubMed ID: 20165799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper-catalyzed trifluoromethylalkynylation of isocyanides.
    Lei J; Wu X; Zhu Q
    Org Lett; 2015 May; 17(10):2322-5. PubMed ID: 25905786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot multi-component route to propargylamines using zinc oxide under solvent-free conditions.
    Hosseini-Sarvari M; Moeini F
    Comb Chem High Throughput Screen; 2014; 17(5):439-49. PubMed ID: 24344992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diastereoselective Synthesis of Tetrasubstituted Propargylamines via Hydroamination and Metalation of 1-Alkynes and Their Enantioselective Conversion to Trisubstituted Chiral Allenes.
    Periasamy M; Reddy PO; Satyanarayana I; Mohan L; Edukondalu A
    J Org Chem; 2016 Feb; 81(3):987-99. PubMed ID: 26726072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organocatalytic asymmetric synthesis of propargylamines with two adjacent stereocenters: mannich-type reactions of in situ generated C-alkynyl imines with β-keto esters.
    Kano T; Yurino T; Maruoka K
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11509-12. PubMed ID: 24038946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper/titanium catalysis forms fully substituted carbon centers from the direct coupling of acyclic ketones, amines, and alkynes.
    Pierce CJ; Nguyen M; Larsen CH
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12289-92. PubMed ID: 23109121
    [No Abstract]   [Full Text] [Related]  

  • 29. Catalyst-free activation of methylene chloride and alkynes by amines in a three-component coupling reaction to synthesize propargylamines.
    Rawat VS; Bathini T; Govardan S; Sreedhar B
    Org Biomol Chem; 2014 Sep; 12(34):6725-9. PubMed ID: 25047719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates.
    De Munck L; Monleón A; Vila C; Muñoz MC; Pedro JR
    Org Biomol Chem; 2015 Jul; 13(27):7393-6. PubMed ID: 26081255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron(III)-catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: an efficient approach to substituted quinolines.
    Cao K; Zhang FM; Tu YQ; Zhuo XT; Fan CA
    Chemistry; 2009 Jun; 15(26):6332-4. PubMed ID: 19472236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper(I)pybox complex in water and in toluene.
    Wei C; Li CJ
    J Am Chem Soc; 2002 May; 124(20):5638-9. PubMed ID: 12010027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-pot synthesis of 1,3-disubstituted allenes from 1-alkynes, aldehydes, and morpholine.
    Kuang J; Ma S
    J Am Chem Soc; 2010 Feb; 132(6):1786-7. PubMed ID: 20102215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc- and indium-promoted conjugate addition-cyclization reactions of ethenetricarboxylates with propargylamines and alcohol: novel methylenepyrrolidine and methylenetetrahydrofuran syntheses.
    Morikawa S; Yamazaki S; Furusaki Y; Amano N; Zenke K; Kakiuchi K
    J Org Chem; 2006 Apr; 71(9):3540-4. PubMed ID: 16626138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Chiral Fluorinated Propargylamines via Chemoselective Biomimetic Hydrogenation.
    Chen MW; Wu B; Chen ZP; Shi L; Zhou YG
    Org Lett; 2016 Sep; 18(18):4650-3. PubMed ID: 27571222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A versatile synthetic platform based on strained propargyl amines.
    He Z; Yudin AK
    Angew Chem Int Ed Engl; 2010 Feb; 49(9):1607-10. PubMed ID: 20119999
    [No Abstract]   [Full Text] [Related]  

  • 37. Direct Conversion of
    Chan JZ; Yesilcimen A; Cao M; Zhang Y; Zhang B; Wasa M
    J Am Chem Soc; 2020 Sep; 142(38):16493-16505. PubMed ID: 32830966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Palladium-catalyzed three-component coupling of arynes with allylic acetates or halides and terminal alkynes promoted by cuprous iodide.
    Bhuvaneswari S; Jeganmohan M; Yang MC; Cheng CH
    Chem Commun (Camb); 2008 May; (18):2158-60. PubMed ID: 18438501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of tetrasubstituted pyrroles from terminal alkynes and imines.
    Hu Y; Wang C; Wang D; Wu F; Wan B
    Org Lett; 2013 Jun; 15(12):3146-9. PubMed ID: 23745688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of isocoumarin derivatives by copper-catalyzed addition of o-halobenzoic acids to active internal alkynes.
    Guo XX
    J Org Chem; 2013 Feb; 78(4):1660-4. PubMed ID: 23311857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.