These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23320794)
1. Sources of variation in false discovery rate estimation include sample size, correlation, and inherent differences between groups. Zhang J; Coombes KR BMC Bioinformatics; 2012; 13 Suppl 13(Suppl 13):S1. PubMed ID: 23320794 [TBL] [Abstract][Full Text] [Related]
2. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
4. Determination of the differentially expressed genes in microarray experiments using local FDR. Aubert J; Bar-Hen A; Daudin JJ; Robin S BMC Bioinformatics; 2004 Sep; 5():125. PubMed ID: 15350197 [TBL] [Abstract][Full Text] [Related]
5. An investigation on performance of Significance Analysis of Microarray (SAM) for the comparisons of several treatments with one control in the presence of small-variance genes. Lin D; Shkedy Z; Burzykowski T; Ion R; Göhlmann HW; Bondt AD; Perer T; Geerts T; Van den Wyngaert I; Bijnens L Biom J; 2008 Oct; 50(5):801-23. PubMed ID: 18932139 [TBL] [Abstract][Full Text] [Related]
6. A unified approach to false discovery rate estimation. Strimmer K BMC Bioinformatics; 2008 Jul; 9():303. PubMed ID: 18613966 [TBL] [Abstract][Full Text] [Related]
7. On correcting the overestimation of the permutation-based false discovery rate estimator. Jiao S; Zhang S Bioinformatics; 2008 Aug; 24(15):1655-61. PubMed ID: 18573796 [TBL] [Abstract][Full Text] [Related]
9. A classification approach for DNA methylation profiling with bisulfite next-generation sequencing data. Cheng L; Zhu Y Bioinformatics; 2014 Jan; 30(2):172-9. PubMed ID: 24273245 [TBL] [Abstract][Full Text] [Related]
10. A mixture model for estimating the local false discovery rate in DNA microarray analysis. Liao JG; Lin Y; Selvanayagam ZE; Shih WJ Bioinformatics; 2004 Nov; 20(16):2694-701. PubMed ID: 15145810 [TBL] [Abstract][Full Text] [Related]
11. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Xie Y; Pan W; Khodursky AB Bioinformatics; 2005 Dec; 21(23):4280-8. PubMed ID: 16188930 [TBL] [Abstract][Full Text] [Related]
12. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data. Jain N; Cho H; O'Connell M; Lee JK BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a statistical equivalence test applied to microarray data. Qiu J; Cui X J Biopharm Stat; 2010 Mar; 20(2):240-66. PubMed ID: 20309757 [TBL] [Abstract][Full Text] [Related]
14. Sample size calculation through the incorporation of heteroscedasticity and dependence for a penalized t-statistic in microarray experiments. Hirakawa A; Hamada C; Yoshimura I J Biopharm Stat; 2012; 22(2):260-75. PubMed ID: 22251173 [TBL] [Abstract][Full Text] [Related]
15. Estimation of false discovery proportion under general dependence. Pawitan Y; Calza S; Ploner A Bioinformatics; 2006 Dec; 22(24):3025-31. PubMed ID: 17046978 [TBL] [Abstract][Full Text] [Related]
16. ConReg-R: Extrapolative recalibration of the empirical distribution of p-values to improve false discovery rate estimates. Li J; Paramita P; Choi KP; Karuturi RK Biol Direct; 2011 May; 6():27. PubMed ID: 21595983 [TBL] [Abstract][Full Text] [Related]
17. An empirical Bayes optimal discovery procedure based on semiparametric hierarchical mixture models. Noma H; Matsui S Comput Math Methods Med; 2013; 2013():568480. PubMed ID: 23690877 [TBL] [Abstract][Full Text] [Related]
18. Sample size for FDR-control in microarray data analysis. Jung SH Bioinformatics; 2005 Jul; 21(14):3097-104. PubMed ID: 15845654 [TBL] [Abstract][Full Text] [Related]
19. Practical FDR-based sample size calculations in microarray experiments. Hu J; Zou F; Wright FA Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903 [TBL] [Abstract][Full Text] [Related]
20. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays. Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]