These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 23320913)
61. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Krishna G; Reddy PS; Ramteke PW; Bhattacharya PS Plant Cell Rep; 2010 Oct; 29(10):1079-95. PubMed ID: 20652570 [TBL] [Abstract][Full Text] [Related]
62. Phenolic content and DPPH radical scavenging activity of the flowers and leaves of Trifolium repens. Kicel A; Wolbiś M Nat Prod Commun; 2013 Jan; 8(1):99-102. PubMed ID: 23472468 [TBL] [Abstract][Full Text] [Related]
63. Nutrients and certain lipid soluble bioactive components in dehusked whole grains (gota) and dehusked splits (dhal) from pigeon pea (Cajanus cajan) and their cooking characteristics. Jayadeep PA; Sashikala VB; Pratape VM Int J Food Sci Nutr; 2009; 60 Suppl 4():273-84. PubMed ID: 19657849 [TBL] [Abstract][Full Text] [Related]
64. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios. Maurya R; Gopal R Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903 [TBL] [Abstract][Full Text] [Related]
65. Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. Berté KA; Beux MR; Spada PK; Salvador M; Hoffmann-Ribani R J Agric Food Chem; 2011 May; 59(10):5523-7. PubMed ID: 21510640 [TBL] [Abstract][Full Text] [Related]
66. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum). Bernaert N; De Paepe D; Bouten C; De Clercq H; Stewart D; Van Bockstaele E; De Loose M; Van Droogenbroeck B Food Chem; 2012 Sep; 134(2):669-77. PubMed ID: 23107677 [TBL] [Abstract][Full Text] [Related]
67. Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Majer P; Hideg E Plant Physiol Biochem; 2012 Jan; 50(1):15-23. PubMed ID: 22099515 [TBL] [Abstract][Full Text] [Related]
68. A profile of bioactive compounds of Rumex vesicarius L. El-Hawary SA; Sokkar NM; Ali ZY; Yehia MM J Food Sci; 2011 Oct; 76(8):C1195-202. PubMed ID: 22417584 [TBL] [Abstract][Full Text] [Related]
69. Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Komes D; Belščak-Cvitanović A; Horžić D; Rusak G; Likić S; Berendika M Phytochem Anal; 2011; 22(2):172-80. PubMed ID: 20848396 [TBL] [Abstract][Full Text] [Related]
70. [Effects of the extracts of Cajanus cajan L. on cell functions in human osteoblast-like TE85 cells and the derivation of osteoclast-like cells]. Zheng YY; Yang J; Chen DH; Sun L Yao Xue Xue Bao; 2007 Apr; 42(4):386-91. PubMed ID: 17633205 [TBL] [Abstract][Full Text] [Related]
72. Antioxidant activity of extracts from the leaves of Smallanthus sonchifolius. Valentova K; Cvak L; Muck A; Ulrichova J; Simanek V Eur J Nutr; 2003 Jan; 42(1):61-6. PubMed ID: 12594543 [TBL] [Abstract][Full Text] [Related]
73. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. Rodríguez-Meizoso I; Marin FR; Herrero M; Señorans FJ; Reglero G; Cifuentes A; Ibáñez E J Pharm Biomed Anal; 2006 Aug; 41(5):1560-5. PubMed ID: 16488570 [TBL] [Abstract][Full Text] [Related]
74. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy. Pandey JK; Dubey G; Gopal R J Photochem Photobiol B; 2015 Oct; 151():297-305. PubMed ID: 25228224 [TBL] [Abstract][Full Text] [Related]
75. Enhancement of bioactive compounds in baby leaf Amaranthus tricolor L. using short-term application of UV-B irradiation. Wittayathanarattana T; Wanichananan P; Supaibulwatana K; Goto E Plant Physiol Biochem; 2022 Jul; 182():202-215. PubMed ID: 35525201 [TBL] [Abstract][Full Text] [Related]
76. The Dietary Use of Pigeon Pea for Human and Animal Diets. Abebe B ScientificWorldJournal; 2022; 2022():4873008. PubMed ID: 35110974 [TBL] [Abstract][Full Text] [Related]
77. Development of a beverage benchtop prototype based on sweet potato peels: optimization of antioxidant activity by a mixture design. Anastácio A; Carvalho IS Int J Food Sci Nutr; 2015 Aug; 67(5):496-506. PubMed ID: 27108876 [TBL] [Abstract][Full Text] [Related]
78. Transcriptome analysis revealed key genes involved in flavonoid metabolism in response to jasmonic acid in pigeon pea (Cajanus cajan (L.) Millsp.). Du T; Fan Y; Cao H; Song Z; Dong B; Liu T; Yang W; Wang M; Niu L; Yang Q; Meng D; Fu Y Plant Physiol Biochem; 2021 Nov; 168():410-422. PubMed ID: 34715566 [TBL] [Abstract][Full Text] [Related]
79. Determination by flow cytometry polyploidy inducing-capacity of colchicine in Cajanus cajan (L.) Mill sp. Udensi OU; Ontui V Pak J Biol Sci; 2013 Jul; 16(13):630-5. PubMed ID: 24505986 [TBL] [Abstract][Full Text] [Related]
80. Nutraceutical protein isolate from pigeon pea (Cajanus cajan) milling waste by-product: functional aspects and digestibility. Tapal A; Vegarud GE; Sreedhara A; Kaul Tiku P Food Funct; 2019 May; 10(5):2710-2719. PubMed ID: 31032823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]