These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23320924)

  • 1. Simulation of catalytic water activation in mitochondrial F1-ATPase using a hybrid quantum mechanics/molecular mechanics approach: an alternative role for β-Glu 188.
    Martín-García F; Mendieta-Moreno JI; Marcos-Alcalde I; Gómez-Puertas P; Mendieta J
    Biochemistry; 2013 Feb; 52(5):959-66. PubMed ID: 23320924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations.
    Hayashi S; Ueno H; Shaikh AR; Umemura M; Kamiya M; Ito Y; Ikeguchi M; Komoriya Y; Iino R; Noji H
    J Am Chem Soc; 2012 May; 134(20):8447-54. PubMed ID: 22548707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum energy reaction profiles for ATP hydrolysis in myosin.
    Grigorenko BL; Kaliman IA; Nemukhin AV
    J Mol Graph Model; 2011 Nov; 31():1-4. PubMed ID: 21839658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An attempt to convert noncatalytic nucleotide binding site of F1-ATPase to the catalytic site: hydrolysis of tethered ATP by mutated alpha subunits in the enzyme.
    Matsui T; Jault JM; Allison WS; Yoshida M
    Biochem Biophys Res Commun; 1996 Mar; 220(1):94-7. PubMed ID: 8602864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrostatic interactions in catalytic centers of F1-ATPase].
    Tikhonov AN; Pogrebnaia AF; Romanovskiĭ IuM
    Biofizika; 2003; 48(6):1052-70. PubMed ID: 14714522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by excess of free ATP, and free Mg2+ ions of the mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus.
    de Vicente JI; del Valle P; Busto F; de Arriaga D; Soler J
    Biochem Int; 1991 May; 24(2):339-47. PubMed ID: 1834062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersubunit rotation in active F-ATPase.
    Sabbert D; Engelbrecht S; Junge W
    Nature; 1996 Jun; 381(6583):623-5. PubMed ID: 8637601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase.
    Gao YQ; Yang W; Marcus RA; Karplus M
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11339-44. PubMed ID: 14500780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase.
    de Meis L
    Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism.
    Qian J; Liang J
    Biosystems; 2011 Sep; 105(3):233-7. PubMed ID: 21664229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ATP synthase: fifteen years later.
    Vinogradov AD
    Biochemistry (Mosc); 1999 Nov; 64(11):1219-29. PubMed ID: 10611526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP synthase: an electrochemical transducer with rotatory mechanics.
    Junge W; Lill H; Engelbrecht S
    Trends Biochem Sci; 1997 Nov; 22(11):420-3. PubMed ID: 9397682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis and reversion analysis of residue Met-209 of the beta-subunit of Escherichia coli ATP synthase.
    Wilke-Mounts S; Pagan J; Senior AE
    Arch Biochem Biophys; 1995 Dec; 324(1):153-8. PubMed ID: 7503551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide.
    Corvest V; Sigalat C; Haraux F
    Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsc70 ATPase: an insight into water dissociation and joint catalytic role of K+ and Mg2+ metal cations in the hydrolysis reaction.
    Boero M; Ikeda T; Ito E; Terakura K
    J Am Chem Soc; 2006 Dec; 128(51):16798-807. PubMed ID: 17177430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zooming in on ATP hydrolysis in F1.
    Dittrich M; Schulten K
    J Bioenerg Biomembr; 2005 Dec; 37(6):441-4. PubMed ID: 16691480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual pKa of the carboxylate at the putative catalytic position of the thermophilic F1-ATPase beta subunit determined by 13C-NMR.
    Tozawa K; Ohbuchi H; Yagi H; Amano T; Matsui T; Yoshida M; Akutsu H
    FEBS Lett; 1996 Nov; 397(1):122-6. PubMed ID: 8941727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.