BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2332098)

  • 1. ATP inhibition competes with activating cations in modulating the NAD(P)(+)-malic enzyme activity in the mitochondrial matrix of Xenopus laevis oocytes.
    Petrucci D; Cesare P
    Int J Biochem; 1990; 22(2):137-41. PubMed ID: 2332098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+.
    Pfeiffer DR; Tchen TT
    Biochemistry; 1975 Jan; 14(1):89-96. PubMed ID: 1167337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some effects of Ca2+, Mg2+ , and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria.
    Pfeiffer DR; Kuo TH; Tchen TT
    Arch Biochem Biophys; 1976 Oct; 176(2):556-63. PubMed ID: 984848
    [No Abstract]   [Full Text] [Related]  

  • 5. Factors that regulate the activity of the phosphatidylinositol kinase present in oocyte membranes of Xenopus laevis.
    Carrasco D; Allende CC; Allende JE
    Comp Biochem Physiol B; 1989; 92(3):487-91. PubMed ID: 2539941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual functional roles of ATP in the human mitochondrial malic enzyme.
    Hsu WC; Hung HC; Tong L; Chang GG
    Biochemistry; 2004 Jun; 43(23):7382-90. PubMed ID: 15182181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide-adenine dinucleotide-linked "malic" enzyme in flight muscle of the tse-tse fly (Glossina) and other insects.
    Hoek JB; Pearson DJ; Olembo NK
    Biochem J; 1976 Nov; 160(2):253-62. PubMed ID: 12751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation.
    Milne JA; Cook RA
    Biochemistry; 1979 Aug; 18(16):3604-10. PubMed ID: 224913
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of coenzyme utilization by mitochondrial NAD(P)-dependent malic enzyme.
    Skorkowski EF; Storey KB
    Int J Biochem; 1990; 22(5):471-5. PubMed ID: 2347425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-dependent malic enzyme.
    Kuo CW; Hung HC; Tong L; Chang GG
    Proteins; 2004 Feb; 54(3):404-11. PubMed ID: 14747989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate.
    Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF
    Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the substrate specificity of the polycation-stimulated protein phosphatase from Xenopus laevis oocytes.
    Hermann J; Cayla X; Dumortier K; Goris J; Ozon R; Merlevede W
    Eur J Biochem; 1988 Apr; 173(1):17-25. PubMed ID: 2833390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic effects of ATP, divalent metal ions and pH on chicken liver mevalonate 5-diphosphate decarboxylase.
    Jabalquinto AM; Cardemil E
    Biochim Biophys Acta; 1987 Nov; 916(2):172-8. PubMed ID: 3676328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate.
    Yang Z; Lanks CW; Tong L
    Structure; 2002 Jul; 10(7):951-60. PubMed ID: 12121650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of C4 photosynthesis: modulation of mitochondrial NAD-malic enzyme by adenylates.
    Furbank RT; Agostino A; Hatch MD
    Arch Biochem Biophys; 1991 Sep; 289(2):376-81. PubMed ID: 1898077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK; Oesterling RM
    Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Mg2+ and Mn2+ in the enzyme-catalysed activation of nitrogenase Fe protein from Rhodospirillum rubrum.
    Guth JH; Burris RH
    Biochem J; 1983 Sep; 213(3):741-9. PubMed ID: 6412690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hung HC; Chien YC; Hsieh JY; Chang GG; Liu GY
    Biochemistry; 2005 Sep; 44(38):12737-45. PubMed ID: 16171388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis.
    Hatch MD; Mau SL; Kagawa T
    Arch Biochem Biophys; 1974 Nov; 165(1):188-200. PubMed ID: 4155265
    [No Abstract]   [Full Text] [Related]  

  • 20. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346.
    Hsieh JY; Liu GY; Hung HC
    FEBS J; 2008 Nov; 275(21):5383-92. PubMed ID: 18959763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.