These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 23321268)

  • 1. Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat.
    Herberger AL; Loretz CA
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Mar; 8(1):86-94. PubMed ID: 23321268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular calcium-sensing receptors in fishes.
    Loretz CA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Mar; 149(3):225-45. PubMed ID: 18302989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morpholino oligonucleotide knockdown of the extracellular calcium-sensing receptor impairs early skeletal development in zebrafish.
    Herberger AL; Loretz CA
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Nov; 166(3):470-81. PubMed ID: 23911792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates.
    He W; Tang Y; Qi B; Lu C; Qin C; Wei Y; Yi J; Chen M
    Gene; 2014 Feb; 535(2):345-52. PubMed ID: 24200960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal tissues in Mozambique tilapia (Oreochromis mossambicus) express the extracellular calcium-sensing receptor.
    Loretz CA; Pollina C; Herberger AL; Hyodo S; Takei Y
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Nov; 163(3-4):311-8. PubMed ID: 22889931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire.
    Krishnan A; Almén MS; Fredriksson R; Schiöth HB
    Gene; 2013 Sep; 526(2):122-33. PubMed ID: 23685280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of molecular evolution vary in vertebrates for insulin-like growth factor-1 (IGF-1), a pleiotropic locus that regulates life history traits.
    Sparkman AM; Schwartz TS; Madden JA; Boyken SE; Ford NB; Serb JM; Bronikowski AM
    Gen Comp Endocrinol; 2012 Aug; 178(1):164-73. PubMed ID: 22569170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis.
    Premzl M; Gready JE; Jermiin LS; Simonic T; Marshall Graves JA
    Mol Biol Evol; 2004 Dec; 21(12):2210-31. PubMed ID: 15342797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of putative transmembrane receptor sequences homologous to the calcium-sensing G-protein-coupled receptor.
    Hinson TK; Damodaran TV; Chen J; Zhang X; Qumsiyeh MB; Seldin MF; Quarles LD
    Genomics; 1997 Oct; 45(2):279-89. PubMed ID: 9344650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals.
    Macqueen DJ; Delbridge ML; Manthri S; Johnston IA
    Mol Biol Evol; 2010 Aug; 27(8):1886-902. PubMed ID: 20223856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural selection and functional diversification of the epidermal growth factor receptor EGFR family in vertebrates.
    Liu Y; He W; Long J; Pang F; Xian L; Chen M; Wu Y; Hu Y
    Genomics; 2013 Jun; 101(6):318-25. PubMed ID: 23499669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular calcium-sensing receptor distribution in osmoregulatory and endocrine tissues of the tilapia.
    Loretz CA; Pollina C; Hyodo S; Takei Y
    Gen Comp Endocrinol; 2009 Apr; 161(2):216-28. PubMed ID: 19523399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease.
    Riccardi D; Kemp PJ
    Annu Rev Physiol; 2012; 74():271-97. PubMed ID: 22017175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of the UCP gene family: gene duplication and selection.
    Hughes J; Criscuolo F
    BMC Evol Biol; 2008 Nov; 8():306. PubMed ID: 18980678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of the extracellular domain of the Ca²⁺-sensing receptor: an alternate model for the Ca²⁺ sensing region.
    Morrill GA; Kostellow AB; Gupta RK
    Biochem Biophys Res Commun; 2015 Mar; 459(1):36-41. PubMed ID: 25701780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor.
    Silve C; Petrel C; Leroy C; Bruel H; Mallet E; Rognan D; Ruat M
    J Biol Chem; 2005 Nov; 280(45):37917-23. PubMed ID: 16147994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites.
    Hendy GN; Canaff L; Cole DE
    Best Pract Res Clin Endocrinol Metab; 2013 Jun; 27(3):285-301. PubMed ID: 23856260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.