These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Masoudi A; Madaah Hosseini HR; Shokrgozar MA; Ahmadi R; Oghabian MA Int J Pharm; 2012 Aug; 433(1-2):129-41. PubMed ID: 22579990 [TBL] [Abstract][Full Text] [Related]
4. Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Aryal S; Key J; Stigliano C; Ananta JS; Zhong M; Decuzzi P Biomaterials; 2013 Oct; 34(31):7725-32. PubMed ID: 23871540 [TBL] [Abstract][Full Text] [Related]
5. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Villanueva A; Cañete M; Roca AG; Calero M; Veintemillas-Verdaguer S; Serna CJ; Morales Mdel P; Miranda R Nanotechnology; 2009 Mar; 20(11):115103. PubMed ID: 19420433 [TBL] [Abstract][Full Text] [Related]
6. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Kumagai M; Imai Y; Nakamura T; Yamasaki Y; Sekino M; Ueno S; Hanaoka K; Kikuchi K; Nagano T; Kaneko E; Shimokado K; Kataoka K Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):174-81. PubMed ID: 17324561 [TBL] [Abstract][Full Text] [Related]
7. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. Kim BH; Lee N; Kim H; An K; Park YI; Choi Y; Shin K; Lee Y; Kwon SG; Na HB; Park JG; Ahn TY; Kim YW; Moon WK; Choi SH; Hyeon T J Am Chem Soc; 2011 Aug; 133(32):12624-31. PubMed ID: 21744804 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Larsen EK; Nielsen T; Wittenborn T; Rydtoft LM; Lokanathan AR; Hansen L; Østergaard L; Kingshott P; Howard KA; Besenbacher F; Nielsen NC; Kjems J Nanoscale; 2012 Apr; 4(7):2352-61. PubMed ID: 22395568 [TBL] [Abstract][Full Text] [Related]
9. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Prashant C; Dipak M; Yang CT; Chuang KH; Jun D; Feng SS Biomaterials; 2010 Jul; 31(21):5588-97. PubMed ID: 20434210 [TBL] [Abstract][Full Text] [Related]
10. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Schweiger C; Pietzonka C; Heverhagen J; Kissel T Int J Pharm; 2011 Apr; 408(1-2):130-7. PubMed ID: 21315813 [TBL] [Abstract][Full Text] [Related]
11. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. Roca AG; Veintemillas-Verdaguer S; Port M; Robic C; Serna CJ; Morales MP J Phys Chem B; 2009 May; 113(19):7033-9. PubMed ID: 19378984 [TBL] [Abstract][Full Text] [Related]
12. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation. Nandwana V; Ryoo SR; Kanthala S; De M; Chou SS; Prasad PV; Dravid VP ACS Appl Mater Interfaces; 2016 Mar; 8(11):6953-61. PubMed ID: 26936392 [TBL] [Abstract][Full Text] [Related]
13. Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly. Ujiie K; Kanayama N; Asai K; Kishimoto M; Ohara Y; Akashi Y; Yamada K; Hashimoto S; Oda T; Ohkohchi N; Yanagihara H; Kita E; Yamaguchi M; Fujii H; Nagasaki Y Colloids Surf B Biointerfaces; 2011 Dec; 88(2):771-8. PubMed ID: 21890332 [TBL] [Abstract][Full Text] [Related]
14. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Kaaki K; Hervé-Aubert K; Chiper M; Shkilnyy A; Soucé M; Benoit R; Paillard A; Dubois P; Saboungi ML; Chourpa I Langmuir; 2012 Jan; 28(2):1496-505. PubMed ID: 22172203 [TBL] [Abstract][Full Text] [Related]
15. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273 [TBL] [Abstract][Full Text] [Related]
16. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Sun C; Sze R; Zhang M J Biomed Mater Res A; 2006 Sep; 78(3):550-7. PubMed ID: 16736484 [TBL] [Abstract][Full Text] [Related]
17. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. Xu H; Yan F; Monson EE; Kopelman R J Biomed Mater Res A; 2003 Sep; 66(4):870-9. PubMed ID: 12926040 [TBL] [Abstract][Full Text] [Related]
18. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer. Chen YC; Min CN; Wu HC; Lin CT; Hsieh WY J Biomater Appl; 2013 Nov; 28(4):580-94. PubMed ID: 23174955 [TBL] [Abstract][Full Text] [Related]
19. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging. Cowger TA; Tang W; Zhen Z; Hu K; Rink DE; Todd TJ; Wang GD; Zhang W; Chen H; Xie J Theranostics; 2015; 5(11):1225-32. PubMed ID: 26379788 [TBL] [Abstract][Full Text] [Related]
20. Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. Kumagai M; Kano MR; Morishita Y; Ota M; Imai Y; Nishiyama N; Sekino M; Ueno S; Miyazono K; Kataoka K J Control Release; 2009 Dec; 140(3):306-11. PubMed ID: 19524625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]